diff --git a/docs/source/building_applications/tools.md b/docs/source/building_applications/tools.md index 94841a773..fc2dd08e5 100644 --- a/docs/source/building_applications/tools.md +++ b/docs/source/building_applications/tools.md @@ -41,7 +41,7 @@ client.toolgroups.register( The tool requires an API key which can be provided either in the configuration or through the request header `X-LlamaStack-Provider-Data`. The format of the header is `{"_api_key": }`. - +> **NOTE:** When using Tavily Search and Bing Search, the inference output will still display "Brave Search." This is because Llama models have been trained with Brave Search as a built-in tool. Tavily and bing is just being used in lieu of Brave search. #### Code Interpreter @@ -214,3 +214,65 @@ response = agent.create_turn( session_id=session_id, ) ``` +## Simple Example 2: Using an Agent with the Web Search Tool +1. Start by registering a Tavily API key at [Tavily](https://tavily.com/). +2. [Optional] Provide the API key directly to the Llama Stack server +```bash +export TAVILY_SEARCH_API_KEY="your key" +``` +```bash +--env TAVILY_SEARCH_API_KEY=${TAVILY_SEARCH_API_KEY} +``` +3. Run the following script. +```python +from llama_stack_client.lib.agents.agent import Agent +from llama_stack_client.types.agent_create_params import AgentConfig +from llama_stack_client.lib.agents.event_logger import EventLogger +from llama_stack_client import LlamaStackClient + +client = LlamaStackClient( + base_url=f"http://localhost:8321", + provider_data = {"tavily_search_api_key": "your_TAVILY_SEARCH_API_KEY"} # Set this from the client side. No need to provide it if it has already been configured on the Llama Stack server. + ) + +agent = Agent( + client, + model="meta-llama/Llama-3.2-3B-Instruct", + instructions=( + "You are a web search assistant, must use websearch tool to look up the most current and precise information available. " + ), + tools=["builtin::websearch"], + ) + +session_id = agent.create_session("websearch-session") + +response = agent.create_turn( + messages=[{"role": "user", "content": "How did the USA perform in the last Olympics?"}], + session_id=session_id, +) +for log in EventLogger().log(response): + log.print() +``` + +## Simple Example3: Using an Agent with the WolframAlpha Tool +1. Start by registering for a WolframAlpha API key at [WolframAlpha Developer Portal](https://developer.wolframalpha.com/access). +2. Provide the API key either when starting the Llama Stack server: + ```bash + --env WOLFRAM_ALPHA_API_KEY=${WOLFRAM_ALPHA_API_KEY} + ``` + or from the client side: + ```python + client = LlamaStackClient( + base_url="http://localhost:8321", + provider_data={"wolfram_alpha_api_key": wolfram_api_key} + ) + ``` +3. Configure the tools in the Agent by setting `tools=["builtin::wolfram_alpha"]`. +4. Example user query: + ```python + response = agent.create_turn( + messages=[{"role": "user", "content": "Solve x^2 + 2x + 1 = 0 using WolframAlpha"}], + session_id=session_id, + ) + ``` +``` \ No newline at end of file