add image support to NVIDIA inference provider (#907)

# What does this PR do?

add support to the NVIDIA Inference provider for image inputs


## Test Plan

1. Run local [Llama 3.2 11b vision
instruct](https://build.nvidia.com/meta/llama-3.2-11b-vision-instruct?snippet_tab=Docker)
NIM
2. Start a stack, e.g. `llama stack run
llama_stack/templates/nvidia/run.yaml --env
NVIDIA_BASE_URL=http://localhost:8000`
3. Run image tests, e.g. `LLAMA_STACK_BASE_URL=http://localhost:8321
pytest -v tests/client-sdk/inference/test_inference.py
--vision-inference-model meta-llama/Llama-3.2-11B-Vision-Instruct -k
image`


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [x] Wrote necessary unit or integration tests.
This commit is contained in:
Matthew Farrellee 2025-02-01 12:02:27 -05:00 committed by GitHub
parent 439d0da84c
commit e21c8b6d80
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 43 additions and 6 deletions

View file

@ -186,7 +186,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
await check_health(self._config) # this raises errors
request = convert_chat_completion_request(
request = await convert_chat_completion_request(
request=ChatCompletionRequest(
model=self.get_provider_model_id(model_id),
messages=messages,

View file

@ -6,7 +6,7 @@
import json
import warnings
from typing import Any, AsyncGenerator, Dict, Generator, List, Optional
from typing import Any, AsyncGenerator, Dict, Generator, Iterable, List, Optional, Union
from llama_models.datatypes import (
GreedySamplingStrategy,
@ -23,6 +23,8 @@ from openai import AsyncStream
from openai.types.chat import (
ChatCompletionAssistantMessageParam as OpenAIChatCompletionAssistantMessage,
ChatCompletionChunk as OpenAIChatCompletionChunk,
ChatCompletionContentPartImageParam as OpenAIChatCompletionContentPartImageParam,
ChatCompletionContentPartParam as OpenAIChatCompletionContentPartParam,
ChatCompletionMessageParam as OpenAIChatCompletionMessage,
ChatCompletionMessageToolCallParam as OpenAIChatCompletionMessageToolCall,
ChatCompletionSystemMessageParam as OpenAIChatCompletionSystemMessage,
@ -33,6 +35,9 @@ from openai.types.chat.chat_completion import (
Choice as OpenAIChoice,
ChoiceLogprobs as OpenAIChoiceLogprobs, # same as chat_completion_chunk ChoiceLogprobs
)
from openai.types.chat.chat_completion_content_part_image_param import (
ImageURL as OpenAIImageURL,
)
from openai.types.chat.chat_completion_message_tool_call_param import (
Function as OpenAIFunction,
)
@ -40,6 +45,9 @@ from openai.types.completion import Completion as OpenAICompletion
from openai.types.completion_choice import Logprobs as OpenAICompletionLogprobs
from llama_stack.apis.common.content_types import (
ImageContentItem,
InterleavedContent,
TextContentItem,
TextDelta,
ToolCallDelta,
ToolCallParseStatus,
@ -62,6 +70,10 @@ from llama_stack.apis.inference import (
UserMessage,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
convert_image_content_to_url,
)
def _convert_tooldef_to_openai_tool(tool: ToolDefinition) -> dict:
"""
@ -139,7 +151,7 @@ def _convert_tooldef_to_openai_tool(tool: ToolDefinition) -> dict:
return out
def _convert_message(message: Message | Dict) -> OpenAIChatCompletionMessage:
async def _convert_message(message: Message | Dict) -> OpenAIChatCompletionMessage:
"""
Convert a Message to an OpenAI API-compatible dictionary.
"""
@ -159,11 +171,35 @@ def _convert_message(message: Message | Dict) -> OpenAIChatCompletionMessage:
else:
raise ValueError(f"Unsupported message role: {message['role']}")
# Map Llama Stack spec to OpenAI spec -
# str -> str
# {"type": "text", "text": ...} -> {"type": "text", "text": ...}
# {"type": "image", "image": {"url": {"uri": ...}}} -> {"type": "image_url", "image_url": {"url": ...}}
# {"type": "image", "image": {"data": ...}} -> {"type": "image_url", "image_url": {"url": "data:image/?;base64,..."}}
# List[...] -> List[...]
async def _convert_user_message_content(
content: InterleavedContent,
) -> Union[str, Iterable[OpenAIChatCompletionContentPartParam]]:
# Llama Stack and OpenAI spec match for str and text input
if isinstance(content, str) or isinstance(content, TextContentItem):
return content
elif isinstance(content, ImageContentItem):
return OpenAIChatCompletionContentPartImageParam(
image_url=OpenAIImageURL(
url=await convert_image_content_to_url(content)
),
type="image_url",
)
elif isinstance(content, List):
return [await _convert_user_message_content(item) for item in content]
else:
raise ValueError(f"Unsupported content type: {type(content)}")
out: OpenAIChatCompletionMessage = None
if isinstance(message, UserMessage):
out = OpenAIChatCompletionUserMessage(
role="user",
content=message.content, # TODO(mf): handle image content
content=await _convert_user_message_content(message.content),
)
elif isinstance(message, CompletionMessage):
out = OpenAIChatCompletionAssistantMessage(
@ -198,7 +234,7 @@ def _convert_message(message: Message | Dict) -> OpenAIChatCompletionMessage:
return out
def convert_chat_completion_request(
async def convert_chat_completion_request(
request: ChatCompletionRequest,
n: int = 1,
) -> dict:
@ -235,7 +271,7 @@ def convert_chat_completion_request(
nvext = {}
payload: Dict[str, Any] = dict(
model=request.model,
messages=[_convert_message(message) for message in request.messages],
messages=[await _convert_message(message) for message in request.messages],
stream=request.stream,
n=n,
extra_body=dict(nvext=nvext),

View file

@ -186,6 +186,7 @@ async def localize_image_content(media: ImageContentItem) -> Tuple[bytes, str]:
return content, format
else:
# data is a base64 encoded string, decode it to bytes first
# TODO(mf): do this more efficiently, decode less
data_bytes = base64.b64decode(image.data)
pil_image = PIL_Image.open(io.BytesIO(data_bytes))
return data_bytes, pil_image.format