forked from phoenix-oss/llama-stack-mirror
feat: add nvidia embedding implementation for new signature, task_type, output_dimention, text_truncation (#1213)
# What does this PR do? updates nvidia inference provider's embedding implementation to use new signature add support for task_type, output_dimensions, text_truncation parameters ## Test Plan `LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v tests/client-sdk/inference/test_embedding.py --embedding-model baai/bge-m3`
This commit is contained in:
parent
73c6f6126f
commit
e28cedd833
2 changed files with 161 additions and 14 deletions
|
@ -8,7 +8,7 @@ import logging
|
|||
import warnings
|
||||
from typing import AsyncIterator, List, Optional, Union
|
||||
|
||||
from openai import APIConnectionError, AsyncOpenAI
|
||||
from openai import APIConnectionError, AsyncOpenAI, BadRequestError
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
@ -144,19 +144,38 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
#
|
||||
# we can ignore str and always pass List[str] to OpenAI
|
||||
#
|
||||
flat_contents = [
|
||||
item.text if isinstance(item, TextContentItem) else item
|
||||
for content in contents
|
||||
for item in (content if isinstance(content, list) else [content])
|
||||
]
|
||||
flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents]
|
||||
input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents]
|
||||
model = self.get_provider_model_id(model_id)
|
||||
|
||||
response = await self._client.embeddings.create(
|
||||
model=model,
|
||||
input=input,
|
||||
# extra_body={"input_type": "passage"|"query"}, # TODO(mf): how to tell caller's intent?
|
||||
)
|
||||
extra_body = {}
|
||||
|
||||
if text_truncation is not None:
|
||||
text_truncation_options = {
|
||||
TextTruncation.none: "NONE",
|
||||
TextTruncation.end: "END",
|
||||
TextTruncation.start: "START",
|
||||
}
|
||||
extra_body["truncate"] = text_truncation_options[text_truncation]
|
||||
|
||||
if output_dimension is not None:
|
||||
extra_body["dimensions"] = output_dimension
|
||||
|
||||
if task_type is not None:
|
||||
task_type_options = {
|
||||
EmbeddingTaskType.document: "passage",
|
||||
EmbeddingTaskType.query: "query",
|
||||
}
|
||||
extra_body["input_type"] = task_type_options[task_type]
|
||||
|
||||
try:
|
||||
response = await self._client.embeddings.create(
|
||||
model=model,
|
||||
input=input,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
except BadRequestError as e:
|
||||
raise ValueError(f"Failed to get embeddings: {e}") from e
|
||||
|
||||
#
|
||||
# OpenAI: CreateEmbeddingResponse(data=[Embedding(embedding=List[float], ...)], ...)
|
||||
|
|
|
@ -14,6 +14,23 @@
|
|||
# - array of a text (TextContentItem)
|
||||
# Types of output:
|
||||
# - list of list of floats
|
||||
# Params:
|
||||
# - text_truncation
|
||||
# - absent w/ long text -> error
|
||||
# - none w/ long text -> error
|
||||
# - absent w/ short text -> ok
|
||||
# - none w/ short text -> ok
|
||||
# - end w/ long text -> ok
|
||||
# - end w/ short text -> ok
|
||||
# - start w/ long text -> ok
|
||||
# - start w/ short text -> ok
|
||||
# - output_dimension
|
||||
# - response dimension matches
|
||||
# - task_type, only for asymmetric models
|
||||
# - query embedding != passage embedding
|
||||
# Negative:
|
||||
# - long string
|
||||
# - long text
|
||||
#
|
||||
# Todo:
|
||||
# - negative tests
|
||||
|
@ -23,8 +40,6 @@
|
|||
# - empty text
|
||||
# - empty image
|
||||
# - long
|
||||
# - long string
|
||||
# - long text
|
||||
# - large image
|
||||
# - appropriate combinations
|
||||
# - batch size
|
||||
|
@ -40,6 +55,7 @@
|
|||
#
|
||||
|
||||
import pytest
|
||||
from llama_stack_client import BadRequestError
|
||||
from llama_stack_client.types import EmbeddingsResponse
|
||||
from llama_stack_client.types.shared.interleaved_content import (
|
||||
ImageContentItem,
|
||||
|
@ -50,8 +66,10 @@ from llama_stack_client.types.shared.interleaved_content import (
|
|||
|
||||
DUMMY_STRING = "hello"
|
||||
DUMMY_STRING2 = "world"
|
||||
DUMMY_LONG_STRING = "NVDA " * 10240
|
||||
DUMMY_TEXT = TextContentItem(text=DUMMY_STRING, type="text")
|
||||
DUMMY_TEXT2 = TextContentItem(text=DUMMY_STRING2, type="text")
|
||||
DUMMY_LONG_TEXT = TextContentItem(text=DUMMY_LONG_STRING, type="text")
|
||||
# TODO(mf): add a real image URL and base64 string
|
||||
DUMMY_IMAGE_URL = ImageContentItem(
|
||||
image=ImageContentItemImage(url=ImageContentItemImageURL(uri="https://example.com/image.jpg")), type="image"
|
||||
|
@ -89,10 +107,120 @@ def test_embedding_text(llama_stack_client, embedding_model_id, contents):
|
|||
"list[url,string,base64,text]",
|
||||
],
|
||||
)
|
||||
@pytest.mark.skip(reason="Media is not supported")
|
||||
@pytest.mark.xfail(reason="Media is not supported")
|
||||
def test_embedding_image(llama_stack_client, embedding_model_id, contents):
|
||||
response = llama_stack_client.inference.embeddings(model_id=embedding_model_id, contents=contents)
|
||||
assert isinstance(response, EmbeddingsResponse)
|
||||
assert len(response.embeddings) == sum(len(content) if isinstance(content, list) else 1 for content in contents)
|
||||
assert isinstance(response.embeddings[0], list)
|
||||
assert isinstance(response.embeddings[0][0], float)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"text_truncation",
|
||||
[
|
||||
"end",
|
||||
"start",
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"contents",
|
||||
[
|
||||
[DUMMY_LONG_TEXT],
|
||||
[DUMMY_STRING],
|
||||
],
|
||||
ids=[
|
||||
"long",
|
||||
"short",
|
||||
],
|
||||
)
|
||||
def test_embedding_truncation(llama_stack_client, embedding_model_id, text_truncation, contents):
|
||||
response = llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id, contents=contents, text_truncation=text_truncation
|
||||
)
|
||||
assert isinstance(response, EmbeddingsResponse)
|
||||
assert len(response.embeddings) == 1
|
||||
assert isinstance(response.embeddings[0], list)
|
||||
assert isinstance(response.embeddings[0][0], float)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"text_truncation",
|
||||
[
|
||||
None,
|
||||
"none",
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"contents",
|
||||
[
|
||||
[DUMMY_LONG_TEXT],
|
||||
[DUMMY_LONG_STRING],
|
||||
],
|
||||
ids=[
|
||||
"long-text",
|
||||
"long-str",
|
||||
],
|
||||
)
|
||||
def test_embedding_truncation_error(llama_stack_client, embedding_model_id, text_truncation, contents):
|
||||
with pytest.raises(BadRequestError) as excinfo:
|
||||
llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id, contents=[DUMMY_LONG_TEXT], text_truncation=text_truncation
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.xfail(reason="Only valid for model supporting dimension reduction")
|
||||
def test_embedding_output_dimension(llama_stack_client, embedding_model_id):
|
||||
base_response = llama_stack_client.inference.embeddings(model_id=embedding_model_id, contents=[DUMMY_STRING])
|
||||
test_response = llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id, contents=[DUMMY_STRING], output_dimension=32
|
||||
)
|
||||
assert len(base_response.embeddings[0]) != len(test_response.embeddings[0])
|
||||
assert len(test_response.embeddings[0]) == 32
|
||||
|
||||
|
||||
@pytest.mark.xfail(reason="Only valid for model supporting task type")
|
||||
def test_embedding_task_type(llama_stack_client, embedding_model_id):
|
||||
query_embedding = llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id, contents=[DUMMY_STRING], task_type="query"
|
||||
)
|
||||
document_embedding = llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id, contents=[DUMMY_STRING], task_type="document"
|
||||
)
|
||||
assert query_embedding.embeddings != document_embedding.embeddings
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"text_truncation",
|
||||
[
|
||||
None,
|
||||
"none",
|
||||
"end",
|
||||
"start",
|
||||
],
|
||||
)
|
||||
def test_embedding_text_truncation(llama_stack_client, embedding_model_id, text_truncation):
|
||||
response = llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id, contents=[DUMMY_STRING], text_truncation=text_truncation
|
||||
)
|
||||
assert isinstance(response, EmbeddingsResponse)
|
||||
assert len(response.embeddings) == 1
|
||||
assert isinstance(response.embeddings[0], list)
|
||||
assert isinstance(response.embeddings[0][0], float)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"text_truncation",
|
||||
[
|
||||
"NONE",
|
||||
"END",
|
||||
"START",
|
||||
"left",
|
||||
"right",
|
||||
],
|
||||
)
|
||||
def test_embedding_text_truncation_error(llama_stack_client, embedding_model_id, text_truncation):
|
||||
with pytest.raises(BadRequestError) as excinfo:
|
||||
llama_stack_client.inference.embeddings(
|
||||
model_id=embedding_model_id, contents=[DUMMY_STRING], text_truncation=text_truncation
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue