feat: add nvidia embedding implementation for new signature, task_type, output_dimention, text_truncation (#1213)

# What does this PR do?

updates nvidia inference provider's embedding implementation to use new
signature

add support for task_type, output_dimensions, text_truncation parameters

## Test Plan

`LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v
tests/client-sdk/inference/test_embedding.py --embedding-model
baai/bge-m3`
This commit is contained in:
Matthew Farrellee 2025-02-27 18:58:11 -06:00 committed by GitHub
parent 73c6f6126f
commit e28cedd833
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 161 additions and 14 deletions

View file

@ -8,7 +8,7 @@ import logging
import warnings
from typing import AsyncIterator, List, Optional, Union
from openai import APIConnectionError, AsyncOpenAI
from openai import APIConnectionError, AsyncOpenAI, BadRequestError
from llama_stack.apis.common.content_types import (
InterleavedContent,
@ -144,19 +144,38 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
#
# we can ignore str and always pass List[str] to OpenAI
#
flat_contents = [
item.text if isinstance(item, TextContentItem) else item
for content in contents
for item in (content if isinstance(content, list) else [content])
]
flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents]
input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents]
model = self.get_provider_model_id(model_id)
response = await self._client.embeddings.create(
model=model,
input=input,
# extra_body={"input_type": "passage"|"query"}, # TODO(mf): how to tell caller's intent?
)
extra_body = {}
if text_truncation is not None:
text_truncation_options = {
TextTruncation.none: "NONE",
TextTruncation.end: "END",
TextTruncation.start: "START",
}
extra_body["truncate"] = text_truncation_options[text_truncation]
if output_dimension is not None:
extra_body["dimensions"] = output_dimension
if task_type is not None:
task_type_options = {
EmbeddingTaskType.document: "passage",
EmbeddingTaskType.query: "query",
}
extra_body["input_type"] = task_type_options[task_type]
try:
response = await self._client.embeddings.create(
model=model,
input=input,
extra_body=extra_body,
)
except BadRequestError as e:
raise ValueError(f"Failed to get embeddings: {e}") from e
#
# OpenAI: CreateEmbeddingResponse(data=[Embedding(embedding=List[float], ...)], ...)

View file

@ -14,6 +14,23 @@
# - array of a text (TextContentItem)
# Types of output:
# - list of list of floats
# Params:
# - text_truncation
# - absent w/ long text -> error
# - none w/ long text -> error
# - absent w/ short text -> ok
# - none w/ short text -> ok
# - end w/ long text -> ok
# - end w/ short text -> ok
# - start w/ long text -> ok
# - start w/ short text -> ok
# - output_dimension
# - response dimension matches
# - task_type, only for asymmetric models
# - query embedding != passage embedding
# Negative:
# - long string
# - long text
#
# Todo:
# - negative tests
@ -23,8 +40,6 @@
# - empty text
# - empty image
# - long
# - long string
# - long text
# - large image
# - appropriate combinations
# - batch size
@ -40,6 +55,7 @@
#
import pytest
from llama_stack_client import BadRequestError
from llama_stack_client.types import EmbeddingsResponse
from llama_stack_client.types.shared.interleaved_content import (
ImageContentItem,
@ -50,8 +66,10 @@ from llama_stack_client.types.shared.interleaved_content import (
DUMMY_STRING = "hello"
DUMMY_STRING2 = "world"
DUMMY_LONG_STRING = "NVDA " * 10240
DUMMY_TEXT = TextContentItem(text=DUMMY_STRING, type="text")
DUMMY_TEXT2 = TextContentItem(text=DUMMY_STRING2, type="text")
DUMMY_LONG_TEXT = TextContentItem(text=DUMMY_LONG_STRING, type="text")
# TODO(mf): add a real image URL and base64 string
DUMMY_IMAGE_URL = ImageContentItem(
image=ImageContentItemImage(url=ImageContentItemImageURL(uri="https://example.com/image.jpg")), type="image"
@ -89,10 +107,120 @@ def test_embedding_text(llama_stack_client, embedding_model_id, contents):
"list[url,string,base64,text]",
],
)
@pytest.mark.skip(reason="Media is not supported")
@pytest.mark.xfail(reason="Media is not supported")
def test_embedding_image(llama_stack_client, embedding_model_id, contents):
response = llama_stack_client.inference.embeddings(model_id=embedding_model_id, contents=contents)
assert isinstance(response, EmbeddingsResponse)
assert len(response.embeddings) == sum(len(content) if isinstance(content, list) else 1 for content in contents)
assert isinstance(response.embeddings[0], list)
assert isinstance(response.embeddings[0][0], float)
@pytest.mark.parametrize(
"text_truncation",
[
"end",
"start",
],
)
@pytest.mark.parametrize(
"contents",
[
[DUMMY_LONG_TEXT],
[DUMMY_STRING],
],
ids=[
"long",
"short",
],
)
def test_embedding_truncation(llama_stack_client, embedding_model_id, text_truncation, contents):
response = llama_stack_client.inference.embeddings(
model_id=embedding_model_id, contents=contents, text_truncation=text_truncation
)
assert isinstance(response, EmbeddingsResponse)
assert len(response.embeddings) == 1
assert isinstance(response.embeddings[0], list)
assert isinstance(response.embeddings[0][0], float)
@pytest.mark.parametrize(
"text_truncation",
[
None,
"none",
],
)
@pytest.mark.parametrize(
"contents",
[
[DUMMY_LONG_TEXT],
[DUMMY_LONG_STRING],
],
ids=[
"long-text",
"long-str",
],
)
def test_embedding_truncation_error(llama_stack_client, embedding_model_id, text_truncation, contents):
with pytest.raises(BadRequestError) as excinfo:
llama_stack_client.inference.embeddings(
model_id=embedding_model_id, contents=[DUMMY_LONG_TEXT], text_truncation=text_truncation
)
@pytest.mark.xfail(reason="Only valid for model supporting dimension reduction")
def test_embedding_output_dimension(llama_stack_client, embedding_model_id):
base_response = llama_stack_client.inference.embeddings(model_id=embedding_model_id, contents=[DUMMY_STRING])
test_response = llama_stack_client.inference.embeddings(
model_id=embedding_model_id, contents=[DUMMY_STRING], output_dimension=32
)
assert len(base_response.embeddings[0]) != len(test_response.embeddings[0])
assert len(test_response.embeddings[0]) == 32
@pytest.mark.xfail(reason="Only valid for model supporting task type")
def test_embedding_task_type(llama_stack_client, embedding_model_id):
query_embedding = llama_stack_client.inference.embeddings(
model_id=embedding_model_id, contents=[DUMMY_STRING], task_type="query"
)
document_embedding = llama_stack_client.inference.embeddings(
model_id=embedding_model_id, contents=[DUMMY_STRING], task_type="document"
)
assert query_embedding.embeddings != document_embedding.embeddings
@pytest.mark.parametrize(
"text_truncation",
[
None,
"none",
"end",
"start",
],
)
def test_embedding_text_truncation(llama_stack_client, embedding_model_id, text_truncation):
response = llama_stack_client.inference.embeddings(
model_id=embedding_model_id, contents=[DUMMY_STRING], text_truncation=text_truncation
)
assert isinstance(response, EmbeddingsResponse)
assert len(response.embeddings) == 1
assert isinstance(response.embeddings[0], list)
assert isinstance(response.embeddings[0][0], float)
@pytest.mark.parametrize(
"text_truncation",
[
"NONE",
"END",
"START",
"left",
"right",
],
)
def test_embedding_text_truncation_error(llama_stack_client, embedding_model_id, text_truncation):
with pytest.raises(BadRequestError) as excinfo:
llama_stack_client.inference.embeddings(
model_id=embedding_model_id, contents=[DUMMY_STRING], text_truncation=text_truncation
)