feat: add nvidia embedding implementation for new signature, task_type, output_dimention, text_truncation (#1213)

# What does this PR do?

updates nvidia inference provider's embedding implementation to use new
signature

add support for task_type, output_dimensions, text_truncation parameters

## Test Plan

`LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v
tests/client-sdk/inference/test_embedding.py --embedding-model
baai/bge-m3`
This commit is contained in:
Matthew Farrellee 2025-02-27 18:58:11 -06:00 committed by GitHub
parent 73c6f6126f
commit e28cedd833
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 161 additions and 14 deletions

View file

@ -8,7 +8,7 @@ import logging
import warnings
from typing import AsyncIterator, List, Optional, Union
from openai import APIConnectionError, AsyncOpenAI
from openai import APIConnectionError, AsyncOpenAI, BadRequestError
from llama_stack.apis.common.content_types import (
InterleavedContent,
@ -144,19 +144,38 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
#
# we can ignore str and always pass List[str] to OpenAI
#
flat_contents = [
item.text if isinstance(item, TextContentItem) else item
for content in contents
for item in (content if isinstance(content, list) else [content])
]
flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents]
input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents]
model = self.get_provider_model_id(model_id)
response = await self._client.embeddings.create(
model=model,
input=input,
# extra_body={"input_type": "passage"|"query"}, # TODO(mf): how to tell caller's intent?
)
extra_body = {}
if text_truncation is not None:
text_truncation_options = {
TextTruncation.none: "NONE",
TextTruncation.end: "END",
TextTruncation.start: "START",
}
extra_body["truncate"] = text_truncation_options[text_truncation]
if output_dimension is not None:
extra_body["dimensions"] = output_dimension
if task_type is not None:
task_type_options = {
EmbeddingTaskType.document: "passage",
EmbeddingTaskType.query: "query",
}
extra_body["input_type"] = task_type_options[task_type]
try:
response = await self._client.embeddings.create(
model=model,
input=input,
extra_body=extra_body,
)
except BadRequestError as e:
raise ValueError(f"Failed to get embeddings: {e}") from e
#
# OpenAI: CreateEmbeddingResponse(data=[Embedding(embedding=List[float], ...)], ...)