forked from phoenix-oss/llama-stack-mirror
[Evals API] [1/n] Initial API (#287)
* type system api * datasets api * fix * datasetio api * kill reward scoring * scoring functions + evals * move jobs, fix errors
This commit is contained in:
parent
b279d3bc58
commit
e45f121c77
15 changed files with 397 additions and 243 deletions
12
llama_stack/apis/common/job_types.py
Normal file
12
llama_stack/apis/common/job_types.py
Normal file
|
@ -0,0 +1,12 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Job(BaseModel):
|
||||
job_id: str
|
65
llama_stack/apis/common/type_system.py
Normal file
65
llama_stack/apis/common/type_system.py
Normal file
|
@ -0,0 +1,65 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict, List, Literal, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Annotated
|
||||
|
||||
|
||||
class StringType(BaseModel):
|
||||
type: Literal["string"] = "string"
|
||||
|
||||
|
||||
class NumberType(BaseModel):
|
||||
type: Literal["number"] = "number"
|
||||
|
||||
|
||||
class BooleanType(BaseModel):
|
||||
type: Literal["boolean"] = "boolean"
|
||||
|
||||
|
||||
class ArrayType(BaseModel):
|
||||
type: Literal["array"] = "array"
|
||||
items: "ParamType"
|
||||
|
||||
|
||||
class ObjectType(BaseModel):
|
||||
type: Literal["object"] = "object"
|
||||
properties: Dict[str, "ParamType"] = Field(default_factory=dict)
|
||||
|
||||
|
||||
class JsonType(BaseModel):
|
||||
type: Literal["json"] = "json"
|
||||
|
||||
|
||||
class UnionType(BaseModel):
|
||||
type: Literal["union"] = "union"
|
||||
options: List["ParamType"] = Field(default_factory=list)
|
||||
|
||||
|
||||
class CustomType(BaseModel):
|
||||
type: Literal["custom"] = "custom"
|
||||
validator_class: str
|
||||
|
||||
|
||||
ParamType = Annotated[
|
||||
Union[
|
||||
StringType,
|
||||
NumberType,
|
||||
BooleanType,
|
||||
ArrayType,
|
||||
ObjectType,
|
||||
JsonType,
|
||||
UnionType,
|
||||
CustomType,
|
||||
],
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
|
||||
ArrayType.model_rebuild()
|
||||
ObjectType.model_rebuild()
|
||||
UnionType.model_rebuild()
|
|
@ -1,63 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, Optional, Protocol
|
||||
|
||||
from llama_models.llama3.api.datatypes import URL
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TrainEvalDatasetColumnType(Enum):
|
||||
dialog = "dialog"
|
||||
text = "text"
|
||||
media = "media"
|
||||
number = "number"
|
||||
json = "json"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TrainEvalDataset(BaseModel):
|
||||
"""Dataset to be used for training or evaluating language models."""
|
||||
|
||||
# TODO(ashwin): figure out if we need to add an enum for a "dataset type"
|
||||
|
||||
columns: Dict[str, TrainEvalDatasetColumnType]
|
||||
content_url: URL
|
||||
metadata: Optional[Dict[str, Any]] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CreateDatasetRequest(BaseModel):
|
||||
"""Request to create a dataset."""
|
||||
|
||||
uuid: str
|
||||
dataset: TrainEvalDataset
|
||||
|
||||
|
||||
class Datasets(Protocol):
|
||||
@webmethod(route="/datasets/create")
|
||||
def create_dataset(
|
||||
self,
|
||||
uuid: str,
|
||||
dataset: TrainEvalDataset,
|
||||
) -> None: ...
|
||||
|
||||
@webmethod(route="/datasets/get")
|
||||
def get_dataset(
|
||||
self,
|
||||
dataset_uuid: str,
|
||||
) -> TrainEvalDataset: ...
|
||||
|
||||
@webmethod(route="/datasets/delete")
|
||||
def delete_dataset(
|
||||
self,
|
||||
dataset_uuid: str,
|
||||
) -> None: ...
|
|
@ -4,4 +4,4 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .reward_scoring import * # noqa: F401 F403
|
||||
from .datasetio import * # noqa: F401 F403
|
39
llama_stack/apis/datasetio/datasetio.py
Normal file
39
llama_stack/apis/datasetio/datasetio.py
Normal file
|
@ -0,0 +1,39 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.datasets import * # noqa: F403
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PaginatedRowsResult(BaseModel):
|
||||
# the rows obey the DatasetSchema for the given dataset
|
||||
rows: List[Dict[str, Any]]
|
||||
total_count: int
|
||||
next_page_token: Optional[str] = None
|
||||
|
||||
|
||||
class DatasetStore(Protocol):
|
||||
def get_dataset(self, identifier: str) -> DatasetDefWithProvider: ...
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class DatasetIO(Protocol):
|
||||
# keeping for aligning with inference/safety, but this is not used
|
||||
dataset_store: DatasetStore
|
||||
|
||||
@webmethod(route="/dataio/get_rows_paginated")
|
||||
async def get_rows_paginated(
|
||||
self,
|
||||
dataset_id: str,
|
||||
rows_in_page: int,
|
||||
page_token: Optional[str] = None,
|
||||
filter_condition: Optional[str] = None,
|
||||
) -> PaginatedRowsResult: ...
|
7
llama_stack/apis/datasets/__init__.py
Normal file
7
llama_stack/apis/datasets/__init__.py
Normal file
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .datasets import * # noqa: F401 F403
|
60
llama_stack/apis/datasets/datasets.py
Normal file
60
llama_stack/apis/datasets/datasets.py
Normal file
|
@ -0,0 +1,60 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, List, Optional, Protocol
|
||||
|
||||
from llama_models.llama3.api.datatypes import URL
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.common.type_system import ParamType
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DatasetDef(BaseModel):
|
||||
identifier: str = Field(
|
||||
description="A unique name for the dataset",
|
||||
)
|
||||
columns_schema: Dict[str, ParamType] = Field(
|
||||
description="The schema definition for this dataset",
|
||||
)
|
||||
url: URL
|
||||
metadata: Dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Any additional metadata for this dataset",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DatasetDefWithProvider(DatasetDef):
|
||||
provider_id: str = Field(
|
||||
description="ID of the provider which serves this dataset",
|
||||
)
|
||||
|
||||
|
||||
class Datasets(Protocol):
|
||||
@webmethod(route="/datasets/register", method="POST")
|
||||
async def register_dataset(
|
||||
self,
|
||||
dataset_def: DatasetDefWithProvider,
|
||||
) -> None: ...
|
||||
|
||||
@webmethod(route="/datasets/get", method="GET")
|
||||
async def get_dataset(
|
||||
self,
|
||||
dataset_identifier: str,
|
||||
) -> Optional[DatasetDefWithProvider]: ...
|
||||
|
||||
@webmethod(route="/datasets/delete")
|
||||
async def delete_dataset(
|
||||
self,
|
||||
dataset_identifier: str,
|
||||
) -> None: ...
|
||||
|
||||
@webmethod(route="/datasets/list", method="GET")
|
||||
async def list_datasets(self) -> List[DatasetDefWithProvider]: ...
|
|
@ -4,4 +4,4 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .evals import * # noqa: F401 F403
|
||||
from .eval import * # noqa: F401 F403
|
70
llama_stack/apis/eval/eval.py
Normal file
70
llama_stack/apis/eval/eval.py
Normal file
|
@ -0,0 +1,70 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Literal, Optional, Protocol, Union
|
||||
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F403
|
||||
from llama_stack.apis.agents import AgentConfig
|
||||
from llama_stack.apis.common.job_types import Job
|
||||
from llama_stack.apis.scoring import * # noqa: F403
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ModelCandidate(BaseModel):
|
||||
type: Literal["model"] = "model"
|
||||
model: str
|
||||
sampling_params: SamplingParams
|
||||
system_message: Optional[SystemMessage] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AgentCandidate(BaseModel):
|
||||
type: Literal["agent"] = "agent"
|
||||
config: AgentConfig
|
||||
|
||||
|
||||
EvalCandidate = Annotated[
|
||||
Union[ModelCandidate, AgentCandidate], Field(discriminator="type")
|
||||
]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EvaluateResponse(BaseModel):
|
||||
generations: List[Dict[str, Any]]
|
||||
|
||||
# each key in the dict is a scoring function name
|
||||
scores: List[Dict[str, ScoringResult]]
|
||||
|
||||
|
||||
class Eval(Protocol):
|
||||
@webmethod(route="/eval/evaluate_batch", method="POST")
|
||||
async def evaluate_batch(
|
||||
self,
|
||||
dataset_id: str,
|
||||
candidate: EvalCandidate,
|
||||
scoring_functions: List[str],
|
||||
) -> Job: ...
|
||||
|
||||
@webmethod(route="/eval/evaluate", method="POST")
|
||||
async def evaluate(
|
||||
self,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
candidate: EvalCandidate,
|
||||
scoring_functions: List[str],
|
||||
) -> EvaluateResponse: ...
|
||||
|
||||
@webmethod(route="/eval/job/status", method="GET")
|
||||
async def job_status(self, job_id: str) -> None: ...
|
||||
|
||||
@webmethod(route="/eval/job/cancel", method="POST")
|
||||
async def job_cancel(self, job_id: str) -> None: ...
|
||||
|
||||
@webmethod(route="/eval/job/result", method="GET")
|
||||
async def job_result(self, job_id: str) -> None: ...
|
|
@ -1,122 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import List, Protocol
|
||||
|
||||
from llama_models.schema_utils import webmethod
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.apis.dataset import * # noqa: F403
|
||||
from llama_stack.apis.common.training_types import * # noqa: F403
|
||||
|
||||
|
||||
class TextGenerationMetric(Enum):
|
||||
perplexity = "perplexity"
|
||||
rouge = "rouge"
|
||||
bleu = "bleu"
|
||||
|
||||
|
||||
class QuestionAnsweringMetric(Enum):
|
||||
em = "em"
|
||||
f1 = "f1"
|
||||
|
||||
|
||||
class SummarizationMetric(Enum):
|
||||
rouge = "rouge"
|
||||
bleu = "bleu"
|
||||
|
||||
|
||||
class EvaluationJob(BaseModel):
|
||||
job_uuid: str
|
||||
|
||||
|
||||
class EvaluationJobLogStream(BaseModel):
|
||||
job_uuid: str
|
||||
|
||||
|
||||
class EvaluateTaskRequestCommon(BaseModel):
|
||||
job_uuid: str
|
||||
dataset: TrainEvalDataset
|
||||
|
||||
checkpoint: Checkpoint
|
||||
|
||||
# generation params
|
||||
sampling_params: SamplingParams = SamplingParams()
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EvaluateTextGenerationRequest(EvaluateTaskRequestCommon):
|
||||
"""Request to evaluate text generation."""
|
||||
|
||||
metrics: List[TextGenerationMetric]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EvaluateQuestionAnsweringRequest(EvaluateTaskRequestCommon):
|
||||
"""Request to evaluate question answering."""
|
||||
|
||||
metrics: List[QuestionAnsweringMetric]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EvaluateSummarizationRequest(EvaluateTaskRequestCommon):
|
||||
"""Request to evaluate summarization."""
|
||||
|
||||
metrics: List[SummarizationMetric]
|
||||
|
||||
|
||||
class EvaluationJobStatusResponse(BaseModel):
|
||||
job_uuid: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EvaluationJobArtifactsResponse(BaseModel):
|
||||
"""Artifacts of a evaluation job."""
|
||||
|
||||
job_uuid: str
|
||||
|
||||
|
||||
class Evaluations(Protocol):
|
||||
@webmethod(route="/evaluate/text_generation/")
|
||||
def evaluate_text_generation(
|
||||
self,
|
||||
metrics: List[TextGenerationMetric],
|
||||
) -> EvaluationJob: ...
|
||||
|
||||
@webmethod(route="/evaluate/question_answering/")
|
||||
def evaluate_question_answering(
|
||||
self,
|
||||
metrics: List[QuestionAnsweringMetric],
|
||||
) -> EvaluationJob: ...
|
||||
|
||||
@webmethod(route="/evaluate/summarization/")
|
||||
def evaluate_summarization(
|
||||
self,
|
||||
metrics: List[SummarizationMetric],
|
||||
) -> EvaluationJob: ...
|
||||
|
||||
@webmethod(route="/evaluate/jobs")
|
||||
def get_evaluation_jobs(self) -> List[EvaluationJob]: ...
|
||||
|
||||
@webmethod(route="/evaluate/job/status")
|
||||
def get_evaluation_job_status(
|
||||
self, job_uuid: str
|
||||
) -> EvaluationJobStatusResponse: ...
|
||||
|
||||
# sends SSE stream of logs
|
||||
@webmethod(route="/evaluate/job/logs")
|
||||
def get_evaluation_job_logstream(self, job_uuid: str) -> EvaluationJobLogStream: ...
|
||||
|
||||
@webmethod(route="/evaluate/job/cancel")
|
||||
def cancel_evaluation_job(self, job_uuid: str) -> None: ...
|
||||
|
||||
@webmethod(route="/evaluate/job/artifacts")
|
||||
def get_evaluation_job_artifacts(
|
||||
self, job_uuid: str
|
||||
) -> EvaluationJobArtifactsResponse: ...
|
|
@ -1,55 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List, Protocol, Union
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ScoredMessage(BaseModel):
|
||||
message: Message
|
||||
score: float
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DialogGenerations(BaseModel):
|
||||
dialog: List[Message]
|
||||
sampled_generations: List[Message]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ScoredDialogGenerations(BaseModel):
|
||||
dialog: List[Message]
|
||||
scored_generations: List[ScoredMessage]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RewardScoringRequest(BaseModel):
|
||||
"""Request to score a reward function. A list of prompts and a list of responses per prompt."""
|
||||
|
||||
dialog_generations: List[DialogGenerations]
|
||||
model: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RewardScoringResponse(BaseModel):
|
||||
"""Response from the reward scoring. Batch of (prompt, response, score) tuples that pass the threshold."""
|
||||
|
||||
scored_generations: List[ScoredDialogGenerations]
|
||||
|
||||
|
||||
class RewardScoring(Protocol):
|
||||
@webmethod(route="/reward_scoring/score")
|
||||
def reward_score(
|
||||
self,
|
||||
dialog_generations: List[DialogGenerations],
|
||||
model: str,
|
||||
) -> Union[RewardScoringResponse]: ...
|
|
@ -4,4 +4,4 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .dataset import * # noqa: F401 F403
|
||||
from .scoring import * # noqa: F401 F403
|
46
llama_stack/apis/scoring/scoring.py
Normal file
46
llama_stack/apis/scoring/scoring.py
Normal file
|
@ -0,0 +1,46 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, List, Protocol, runtime_checkable
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F403
|
||||
|
||||
|
||||
ScoringResult = Dict[str, Any]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ScoreBatchResponse(BaseModel):
|
||||
dataset_id: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ScoreResponse(BaseModel):
|
||||
# each key in the dict is a scoring function name
|
||||
results: List[Dict[str, ScoringResult]]
|
||||
|
||||
|
||||
class ScoringFunctionStore(Protocol):
|
||||
def get_scoring_function(self, name: str) -> ScoringFunctionDefWithProvider: ...
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class Scoring(Protocol):
|
||||
scoring_function_store: ScoringFunctionStore
|
||||
|
||||
@webmethod(route="/scoring/score_batch")
|
||||
async def score_batch(
|
||||
self, dataset_id: str, scoring_functions: List[str]
|
||||
) -> ScoreBatchResponse: ...
|
||||
|
||||
@webmethod(route="/scoring/score")
|
||||
async def score(
|
||||
self, input_rows: List[Dict[str, Any]], scoring_functions: List[str]
|
||||
) -> ScoreResponse: ...
|
7
llama_stack/apis/scoring_functions/__init__.py
Normal file
7
llama_stack/apis/scoring_functions/__init__.py
Normal file
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .scoring_functions import * # noqa: F401 F403
|
88
llama_stack/apis/scoring_functions/scoring_functions.py
Normal file
88
llama_stack/apis/scoring_functions/scoring_functions.py
Normal file
|
@ -0,0 +1,88 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import (
|
||||
Any,
|
||||
Dict,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Protocol,
|
||||
runtime_checkable,
|
||||
Union,
|
||||
)
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from llama_stack.apis.common.type_system import ParamType
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Parameter(BaseModel):
|
||||
name: str
|
||||
type: ParamType
|
||||
description: Optional[str] = None
|
||||
|
||||
|
||||
# Perhaps more structure can be imposed on these functions. Maybe they could be associated
|
||||
# with standard metrics so they can be rolled up?
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CommonDef(BaseModel):
|
||||
name: str
|
||||
description: Optional[str] = None
|
||||
metadata: Dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Any additional metadata for this definition",
|
||||
)
|
||||
# Hack: same with memory_banks for union defs
|
||||
provider_id: str = ""
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DeterministicFunctionDef(CommonDef):
|
||||
type: Literal["deterministic"] = "deterministic"
|
||||
parameters: List[Parameter] = Field(
|
||||
description="List of parameters for the deterministic function",
|
||||
)
|
||||
return_type: ParamType = Field(
|
||||
description="The return type of the deterministic function",
|
||||
)
|
||||
# We can optionally add information here to support packaging of code, etc.
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class LLMJudgeFunctionDef(CommonDef):
|
||||
type: Literal["judge"] = "judge"
|
||||
model: str = Field(
|
||||
description="The LLM model to use for the judge function",
|
||||
)
|
||||
|
||||
|
||||
ScoringFunctionDef = Annotated[
|
||||
Union[DeterministicFunctionDef, LLMJudgeFunctionDef], Field(discriminator="type")
|
||||
]
|
||||
|
||||
ScoringFunctionDefWithProvider = ScoringFunctionDef
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class ScoringFunctions(Protocol):
|
||||
@webmethod(route="/scoring_functions/list", method="GET")
|
||||
async def list_scoring_functions(self) -> List[ScoringFunctionDefWithProvider]: ...
|
||||
|
||||
@webmethod(route="/scoring_functions/get", method="GET")
|
||||
async def get_scoring_function(
|
||||
self, name: str
|
||||
) -> Optional[ScoringFunctionDefWithProvider]: ...
|
||||
|
||||
@webmethod(route="/scoring_functions/register", method="POST")
|
||||
async def register_scoring_function(
|
||||
self, function: ScoringFunctionDefWithProvider
|
||||
) -> None: ...
|
Loading…
Add table
Add a link
Reference in a new issue