Introduce Llama stack distributions (#22)

* Add distribution CLI scaffolding

* More progress towards `llama distribution install`

* getting closer to a distro definition, distro install + configure works

* Distribution server now functioning

* read existing configuration, save enums properly

* Remove inference uvicorn server entrypoint and llama inference CLI command

* updated dependency and client model name

* Improved exception handling

* local imports for faster cli

* undo a typo, add a passthrough distribution

* implement full-passthrough in the server

* add safety adapters, configuration handling, server + clients

* cleanup, moving stuff to common, nuke utils

* Add a Path() wrapper at the earliest place

* fixes

* Bring agentic system api to toolchain

Add adapter dependencies and resolve adapters using a topological sort

* refactor to reduce size of `agentic_system`

* move straggler files and fix some important existing bugs

* ApiSurface -> Api

* refactor a method out

* Adapter -> Provider

* Make each inference provider into its own subdirectory

* installation fixes

* Rename Distribution -> DistributionSpec, simplify RemoteProviders

* dict key instead of attr

* update inference config to take model and not model_dir

* Fix passthrough streaming, send headers properly not part of body :facepalm

* update safety to use model sku ids and not model dirs

* Update cli_reference.md

* minor fixes

* add DistributionConfig, fix a bug in model download

* Make install + start scripts do proper configuration automatically

* Update CLI_reference

* Nuke fp8_requirements, fold fbgemm into common requirements

* Update README, add newline between API surface configurations

* Refactor download functionality out of the Command so can be reused

* Add `llama model download` alias for `llama download`

* Show message about checksum file so users can check themselves

* Simpler intro statements

* get ollama working

* Reduce a bunch of dependencies from toolchain

Some improvements to the distribution install script

* Avoid using `conda run` since it buffers everything

* update dependencies and rely on LLAMA_TOOLCHAIN_DIR for dev purposes

* add validation for configuration input

* resort imports

* make optional subclasses default to yes for configuration

* Remove additional_pip_packages; move deps to providers

* for inline make 8b model the default

* Add scripts to MANIFEST

* allow installing from test.pypi.org

* Fix #2 to help with testing packages

* Must install llama-models at that same version first

* fix PIP_ARGS

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
Co-authored-by: Hardik Shah <hjshah@meta.com>
This commit is contained in:
Ashwin Bharambe 2024-08-08 13:38:41 -07:00 committed by GitHub
parent da4645a27a
commit e830814399
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
115 changed files with 5839 additions and 1120 deletions

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,133 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import errno
# Disabling potentially dangerous functions
import os as _os
from functools import partial
os_funcs_to_disable = [
"kill",
"system",
"putenv",
"remove",
"removedirs",
"rmdir",
"fchdir",
"setuid",
"fork",
"forkpty",
"killpg",
"rename",
"renames",
"truncate",
"replace",
# "unlink", # Commenting as this was blocking matpltlib from rendering plots correctly
"fchmod",
"fchown",
"chmod",
"chown",
"chroot",
"fchdir",
"lchflags",
"lchmod",
"lchown",
"chdir",
]
def call_not_allowed(*args, **kwargs):
raise OSError(errno.EPERM, "Call are not permitted in this environment")
for func_name in os_funcs_to_disable:
if hasattr(_os, func_name):
setattr(_os, func_name, partial(call_not_allowed, _func_name=f"os.{func_name}"))
import shutil as _shutil
for func_name in ["rmtree", "move", "chown"]:
if hasattr(_shutil, func_name):
setattr(
_shutil,
func_name,
partial(call_not_allowed, _func_name=f"shutil.{func_name}"),
)
import subprocess as _subprocess
def popen_not_allowed(*args, **kwargs):
raise _subprocess.CalledProcessError(
-1,
args[0] if args else "unknown",
stderr="subprocess.Popen is not allowed in this environment",
)
_subprocess.Popen = popen_not_allowed
import atexit as _atexit
import builtins as _builtins
import io as _io
import json as _json
import sys as _sys
# NB! The following "unused" imports crucial, make sure not not to remove
# them with linters - they're used in code_execution.py
from contextlib import ( # noqa
contextmanager as _contextmanager,
redirect_stderr as _redirect_stderr,
redirect_stdout as _redirect_stdout,
)
from multiprocessing.connection import Connection as _Connection
# Mangle imports to avoid polluting model execution namespace.
_IO_SINK = _io.StringIO()
_NETWORK_TIMEOUT = 5
_NETWORK_CONNECTIONS = None
def _open_connections():
global _NETWORK_CONNECTIONS
if _NETWORK_CONNECTIONS is not None:
# Ensure connections only opened once.
return _NETWORK_CONNECTIONS
req_w_fd, resp_r_fd = _sys.argv[1], _sys.argv[2]
req_con = _Connection(int(req_w_fd), readable=False)
resp_con = _Connection(int(resp_r_fd), writable=False)
_NETWORK_CONNECTIONS = (req_con, resp_con)
return _NETWORK_CONNECTIONS
_builtins._open_connections = _open_connections
@_atexit.register
def _close_connections():
global _NETWORK_CONNECTIONS
if _NETWORK_CONNECTIONS is None:
return
for con in _NETWORK_CONNECTIONS:
con.close()
del _NETWORK_CONNECTIONS
def _network_call(request):
# NOTE: We communicate with the parent process in json, encoded
# in raw bytes. We do this because native send/recv methods use
# pickle which involves execution of arbitrary code.
_open_connections()
req_con, resp_con = _NETWORK_CONNECTIONS
req_con.send_bytes(_json.dumps(request).encode("utf-8"))
if resp_con.poll(timeout=_NETWORK_TIMEOUT) is None:
raise Exception(f"Network request timed out: {_json.dumps(request)}")
else:
return _json.loads(resp_con.recv_bytes().decode("utf-8"))

View file

@ -0,0 +1,256 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import json
import multiprocessing
import os
import re
import subprocess
import sys
import tempfile
import textwrap
import time
from dataclasses import dataclass
from datetime import datetime
from io import BytesIO
from pathlib import Path
from typing import List
from PIL import Image
from .utils import get_code_env_prefix
TOOLS_ATTACHMENT_KEY = "__tools_attachment__"
TOOLS_ATTACHMENT_KEY_REGEX = re.compile(r"__tools_attachment__=(\{.*?\})")
DIRNAME = Path(__file__).parent
CODE_EXEC_TIMEOUT = 20
CODE_ENV_PREFIX = get_code_env_prefix()
STDOUTERR_SINK_WRAPPER_TEMPLATE = """\
with _redirect_stdout(_IO_SINK), _redirect_stderr(_IO_SINK):
{code}\
"""
TRYEXCEPT_WRAPPER_TEMPLATE = """\
try:
{code}
except:
pass\
"""
def generate_bwrap_command(bind_dirs: List[str]) -> str:
"""
Generate the bwrap command string for binding all
directories in the current directory read-only.
"""
bwrap_args = ""
bwrap_args += "--ro-bind / / "
# Add the --dev flag to mount device files
bwrap_args += "--dev /dev "
for d in bind_dirs:
bwrap_args += f"--bind {d} {d} "
# Add the --unshare-all flag to isolate the sandbox from the rest of the system
bwrap_args += "--unshare-all "
# Add the --die-with-parent flag to ensure the child process dies when bwrap's parent dies
bwrap_args += "--die-with-parent "
return bwrap_args
@dataclass
class CodeExecutionContext:
matplotlib_dump_dir: str
use_proxy: bool = False
@dataclass
class CodeExecutionRequest:
scripts: List[str]
only_last_cell_stdouterr: bool = True
only_last_cell_fail: bool = True
seed: int = 0
strip_fpaths_in_stderr: bool = True
class CodeExecutor:
def __init__(self, context: CodeExecutionContext):
self.context = context
def execute(self, req: CodeExecutionRequest) -> dict:
scripts = req.scripts
for i in range(len(scripts) - 1):
if req.only_last_cell_stdouterr:
scripts[i] = STDOUTERR_SINK_WRAPPER_TEMPLATE.format(
code=textwrap.indent(scripts[i], " " * 4)
)
if req.only_last_cell_fail:
scripts[i] = TRYEXCEPT_WRAPPER_TEMPLATE.format(
code=textwrap.indent(scripts[i], " " * 4)
)
# Seeds prefix:
seed = req.seed
seeds_prefix = f"""\
def _set_seeds():
import random
random.seed({seed})
import numpy as np
np.random.seed({seed})
_set_seeds()\
"""
script = "\n\n".join([seeds_prefix] + [CODE_ENV_PREFIX] + scripts)
with tempfile.TemporaryDirectory() as dpath:
bwrap_prefix = "bwrap " + generate_bwrap_command(bind_dirs=[dpath])
cmd = [*bwrap_prefix.split(), sys.executable, "-c", script]
code_fpath = os.path.join(dpath, "code.py")
with open(code_fpath, "w") as f:
f.write(script)
try:
python_path = os.environ.get("PYTHONPATH", "")
env = dict(
os.environ,
PYTHONHASHSEED=str(seed),
MPLCONFIGDIR=dpath,
MPLBACKEND="module://matplotlib_custom_backend",
PYTHONPATH=f"{DIRNAME}:{python_path}",
)
stdout, stderr, returncode = do_subprocess(
cmd=cmd,
env=env,
ctx=self.context,
)
stderr = stderr.strip()
if req.strip_fpaths_in_stderr:
pattern = r'File "([^"]+)", line (\d+)'
stderr = re.sub(pattern, r"line \2", stderr)
return {
"process_status": "completed",
"returncode": returncode,
"stdout": stdout.strip(),
"stderr": stderr,
}
except subprocess.TimeoutExpired:
return {
"process_status": "timeout",
"stdout": "Timed out",
"stderr": "Timed out",
}
except Exception as e:
return {
"process_status": "error",
"error_type": type(e).__name__,
"stderr": str(e),
"stdout": str(e),
}
def process_matplotlib_response(response, matplotlib_dump_dir: str):
image_data = response["image_data"]
# Convert the base64 string to a bytes object
images = [base64.b64decode(d["image_base64"]) for d in image_data]
# Create a list of PIL images from the bytes objects
images = [Image.open(BytesIO(img)) for img in images]
# Create a list of image paths
image_paths = []
for i, img in enumerate(images):
# create new directory for each day to better organize data:
dump_dname = datetime.today().strftime("%Y-%m-%d")
dump_dpath = Path(matplotlib_dump_dir, dump_dname)
dump_dpath.mkdir(parents=True, exist_ok=True)
# save image into a file
dump_fname = f"matplotlib_{str(time.time()).replace('.', '_')}_{i}.png"
dump_fpath = dump_dpath / dump_fname
img.save(dump_fpath, "PNG")
image_paths.append(str(dump_fpath))
# this is kind of convoluted, we send back this response to the subprocess which
# prints it out
info = {
"filepath": str(image_paths[-1]),
"mimetype": "image/png",
}
return f"{TOOLS_ATTACHMENT_KEY}={json.dumps(info)}"
def execute_subprocess_request(request, ctx: CodeExecutionContext):
"Route requests from the subprocess (via network Pipes) to the internet/tools."
if request["type"] == "matplotlib":
return process_matplotlib_response(request, ctx.matplotlib_dump_dir)
else:
raise Exception(f'Unrecognised network request type: {request["type"]}')
def do_subprocess(*, cmd: list, env: dict, ctx: CodeExecutionContext):
# Create Pipes to be used for any external tool/network requests.
req_r, req_w = multiprocessing.Pipe(duplex=False)
resp_r, resp_w = multiprocessing.Pipe(duplex=False)
cmd += [str(req_w.fileno()), str(resp_r.fileno())]
proc = subprocess.Popen(
cmd,
pass_fds=(req_w.fileno(), resp_r.fileno()),
text=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
close_fds=True,
env=env,
)
# Close unnecessary fds.
req_w.close()
resp_r.close()
pipe_close = False
done_read = False
start = time.monotonic()
while proc.poll() is None and not pipe_close:
if req_r.poll(0.1):
# NB: Python pipe semantics for poll and recv mean that
# poll() returns True is a pipe is closed.
# CF old school PEP from '09
# https://bugs.python.org/issue5573
try:
request = json.loads(req_r.recv_bytes().decode("utf-8"))
response = execute_subprocess_request(request, ctx)
resp_w.send_bytes(json.dumps(response).encode("utf-8"))
except EOFError:
# The request pipe is closed - set a marker to exit
# after the next attempt at reading stdout/stderr.
pipe_close = True
try:
# If lots has been printed, pipe might be full but
# proc cannot exit until all the stdout/stderr
# been written/read.
stdout, stderr = proc.communicate(timeout=0.3)
done_read = True
except subprocess.TimeoutExpired:
# The program has not terminated. Ignore it, there
# may be more network/tool requests.
continue
if time.monotonic() - start > CODE_EXEC_TIMEOUT:
proc.terminate()
raise subprocess.TimeoutExpired(cmd, CODE_EXEC_TIMEOUT)
if not done_read:
# Solve race condition where process terminates before
# we hit the while loop.
stdout, stderr = proc.communicate(timeout=0.3)
resp_w.close()
req_r.close()
return stdout, stderr, proc.returncode

View file

@ -0,0 +1,87 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
A custom Matplotlib backend that overrides the show method to return image bytes.
"""
import base64
import io
import json as _json
import matplotlib
from matplotlib.backend_bases import FigureManagerBase
# Import necessary components from Matplotlib
from matplotlib.backends.backend_agg import FigureCanvasAgg
class CustomFigureCanvas(FigureCanvasAgg):
def show(self):
# Save the figure to a BytesIO object
buf = io.BytesIO()
self.print_png(buf)
image_bytes = buf.getvalue()
buf.close()
return image_bytes
class CustomFigureManager(FigureManagerBase):
def __init__(self, canvas, num):
super().__init__(canvas, num)
# Mimic module initialization that integrates with the Matplotlib backend system
def _create_figure_manager(num, *args, **kwargs):
"""
Create a custom figure manager instance.
"""
FigureClass = kwargs.pop("FigureClass", None) # noqa: N806
if FigureClass is None:
from matplotlib.figure import Figure
FigureClass = Figure # noqa: N806
fig = FigureClass(*args, **kwargs)
canvas = CustomFigureCanvas(fig)
manager = CustomFigureManager(canvas, num)
return manager
def show():
"""
Handle all figures and potentially return their images as bytes.
This function iterates over all figures registered with the custom backend,
renders them as images in bytes format, and could return a list of bytes objects,
one for each figure, or handle them as needed.
"""
image_data = []
for manager in matplotlib._pylab_helpers.Gcf.get_all_fig_managers():
# Get the figure from the manager
fig = manager.canvas.figure
buf = io.BytesIO() # Create a buffer for the figure
fig.savefig(buf, format="png") # Save the figure to the buffer in PNG format
buf.seek(0) # Go to the beginning of the buffer
image_bytes = buf.getvalue() # Retrieve bytes value
image_base64 = base64.b64encode(image_bytes).decode("utf-8")
image_data.append({"image_base64": image_base64})
buf.close()
req_con, resp_con = _open_connections()
_json_dump = _json.dumps(
{
"type": "matplotlib",
"image_data": image_data,
}
)
req_con.send_bytes(_json_dump.encode("utf-8"))
resp = _json.loads(resp_con.recv_bytes().decode("utf-8"))
print(resp)
FigureCanvas = CustomFigureCanvas
FigureManager = CustomFigureManager

View file

@ -0,0 +1,21 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
DIR = os.path.dirname(os.path.realpath(__file__))
CODE_ENV_PREFIX_FILE = os.path.join(DIR, "code_env_prefix.py")
CODE_ENV_PREFIX = None
def get_code_env_prefix() -> str:
global CODE_ENV_PREFIX
if CODE_ENV_PREFIX is None:
with open(CODE_ENV_PREFIX_FILE, "r") as f:
CODE_ENV_PREFIX = f.read()
return CODE_ENV_PREFIX