forked from phoenix-oss/llama-stack-mirror
Introduce Llama stack distributions (#22)
* Add distribution CLI scaffolding * More progress towards `llama distribution install` * getting closer to a distro definition, distro install + configure works * Distribution server now functioning * read existing configuration, save enums properly * Remove inference uvicorn server entrypoint and llama inference CLI command * updated dependency and client model name * Improved exception handling * local imports for faster cli * undo a typo, add a passthrough distribution * implement full-passthrough in the server * add safety adapters, configuration handling, server + clients * cleanup, moving stuff to common, nuke utils * Add a Path() wrapper at the earliest place * fixes * Bring agentic system api to toolchain Add adapter dependencies and resolve adapters using a topological sort * refactor to reduce size of `agentic_system` * move straggler files and fix some important existing bugs * ApiSurface -> Api * refactor a method out * Adapter -> Provider * Make each inference provider into its own subdirectory * installation fixes * Rename Distribution -> DistributionSpec, simplify RemoteProviders * dict key instead of attr * update inference config to take model and not model_dir * Fix passthrough streaming, send headers properly not part of body :facepalm * update safety to use model sku ids and not model dirs * Update cli_reference.md * minor fixes * add DistributionConfig, fix a bug in model download * Make install + start scripts do proper configuration automatically * Update CLI_reference * Nuke fp8_requirements, fold fbgemm into common requirements * Update README, add newline between API surface configurations * Refactor download functionality out of the Command so can be reused * Add `llama model download` alias for `llama download` * Show message about checksum file so users can check themselves * Simpler intro statements * get ollama working * Reduce a bunch of dependencies from toolchain Some improvements to the distribution install script * Avoid using `conda run` since it buffers everything * update dependencies and rely on LLAMA_TOOLCHAIN_DIR for dev purposes * add validation for configuration input * resort imports * make optional subclasses default to yes for configuration * Remove additional_pip_packages; move deps to providers * for inline make 8b model the default * Add scripts to MANIFEST * allow installing from test.pypi.org * Fix #2 to help with testing packages * Must install llama-models at that same version first * fix PIP_ARGS --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Hardik Shah <hjshah@meta.com>
This commit is contained in:
parent
da4645a27a
commit
e830814399
115 changed files with 5839 additions and 1120 deletions
|
@ -9,26 +9,14 @@ import asyncio
|
|||
import os
|
||||
import shutil
|
||||
import time
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
|
||||
import httpx
|
||||
|
||||
from huggingface_hub import snapshot_download
|
||||
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
|
||||
|
||||
from llama_models.datatypes import Model
|
||||
from llama_models.sku_list import (
|
||||
all_registered_models,
|
||||
llama_meta_net_info,
|
||||
resolve_model,
|
||||
)
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_toolchain.cli.subcommand import Subcommand
|
||||
from llama_toolchain.utils import DEFAULT_DUMP_DIR
|
||||
|
||||
|
||||
DEFAULT_CHECKPOINT_DIR = os.path.join(DEFAULT_DUMP_DIR, "checkpoints")
|
||||
|
||||
|
||||
class Download(Subcommand):
|
||||
|
@ -42,107 +30,130 @@ class Download(Subcommand):
|
|||
description="Download a model from llama.meta.comf or HuggingFace hub",
|
||||
formatter_class=argparse.RawTextHelpFormatter,
|
||||
)
|
||||
self._add_arguments()
|
||||
self.parser.set_defaults(func=self._run_download_cmd)
|
||||
setup_download_parser(self.parser)
|
||||
|
||||
def _add_arguments(self):
|
||||
models = all_registered_models()
|
||||
self.parser.add_argument(
|
||||
"--source",
|
||||
choices=["meta", "huggingface"],
|
||||
required=True,
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"--model-id",
|
||||
choices=[x.descriptor() for x in models],
|
||||
required=True,
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"--hf-token",
|
||||
type=str,
|
||||
required=False,
|
||||
default=None,
|
||||
help="Hugging Face API token. Needed for gated models like llama2/3. Will also try to read environment variable `HF_TOKEN` as default.",
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"--meta-url",
|
||||
type=str,
|
||||
required=False,
|
||||
help="For source=meta, URL obtained from llama.meta.com after accepting license terms",
|
||||
)
|
||||
self.parser.add_argument(
|
||||
"--ignore-patterns",
|
||||
type=str,
|
||||
required=False,
|
||||
default="*.safetensors",
|
||||
help="""
|
||||
|
||||
def setup_download_parser(parser: argparse.ArgumentParser) -> None:
|
||||
from llama_models.sku_list import all_registered_models
|
||||
|
||||
models = all_registered_models()
|
||||
parser.add_argument(
|
||||
"--source",
|
||||
choices=["meta", "huggingface"],
|
||||
required=True,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model-id",
|
||||
choices=[x.descriptor() for x in models],
|
||||
required=True,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hf-token",
|
||||
type=str,
|
||||
required=False,
|
||||
default=None,
|
||||
help="Hugging Face API token. Needed for gated models like llama2/3. Will also try to read environment variable `HF_TOKEN` as default.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta-url",
|
||||
type=str,
|
||||
required=False,
|
||||
help="For source=meta, URL obtained from llama.meta.com after accepting license terms",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ignore-patterns",
|
||||
type=str,
|
||||
required=False,
|
||||
default="*.safetensors",
|
||||
help="""
|
||||
For source=huggingface, files matching any of the patterns are not downloaded. Defaults to ignoring
|
||||
safetensors files to avoid downloading duplicate weights.
|
||||
""",
|
||||
)
|
||||
parser.set_defaults(func=partial(run_download_cmd, parser=parser))
|
||||
|
||||
|
||||
def _hf_download(
|
||||
model: "Model",
|
||||
hf_token: str,
|
||||
ignore_patterns: str,
|
||||
parser: argparse.ArgumentParser,
|
||||
):
|
||||
from huggingface_hub import snapshot_download
|
||||
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
|
||||
|
||||
from llama_toolchain.common.model_utils import model_local_dir
|
||||
|
||||
repo_id = model.huggingface_repo
|
||||
if repo_id is None:
|
||||
raise ValueError(f"No repo id found for model {model.descriptor()}")
|
||||
|
||||
output_dir = model_local_dir(model)
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
try:
|
||||
true_output_dir = snapshot_download(
|
||||
repo_id,
|
||||
local_dir=output_dir,
|
||||
ignore_patterns=ignore_patterns,
|
||||
token=hf_token,
|
||||
library_name="llama-toolchain",
|
||||
)
|
||||
except GatedRepoError:
|
||||
parser.error(
|
||||
"It looks like you are trying to access a gated repository. Please ensure you "
|
||||
"have access to the repository and have provided the proper Hugging Face API token "
|
||||
"using the option `--hf-token` or by running `huggingface-cli login`."
|
||||
"You can find your token by visiting https://huggingface.co/settings/tokens"
|
||||
)
|
||||
except RepositoryNotFoundError:
|
||||
parser.error(f"Repository '{args.repo_id}' not found on the Hugging Face Hub.")
|
||||
except Exception as e:
|
||||
parser.error(e)
|
||||
|
||||
def _hf_download(self, model: Model, hf_token: str, ignore_patterns: str):
|
||||
repo_id = model.huggingface_repo
|
||||
if repo_id is None:
|
||||
raise ValueError(f"No repo id found for model {model.descriptor()}")
|
||||
print(f"\nSuccessfully downloaded model to {true_output_dir}")
|
||||
|
||||
output_dir = Path(DEFAULT_CHECKPOINT_DIR) / model.descriptor()
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
try:
|
||||
true_output_dir = snapshot_download(
|
||||
repo_id,
|
||||
local_dir=output_dir,
|
||||
ignore_patterns=ignore_patterns,
|
||||
token=hf_token,
|
||||
library_name="llama-toolchain",
|
||||
|
||||
def _meta_download(model: "Model", meta_url: str):
|
||||
from llama_models.sku_list import llama_meta_net_info
|
||||
|
||||
from llama_toolchain.common.model_utils import model_local_dir
|
||||
|
||||
output_dir = Path(model_local_dir(model))
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
info = llama_meta_net_info(model)
|
||||
|
||||
# I believe we can use some concurrency here if needed but not sure it is worth it
|
||||
for f in info.files:
|
||||
output_file = str(output_dir / f)
|
||||
url = meta_url.replace("*", f"{info.folder}/{f}")
|
||||
total_size = info.pth_size if "consolidated" in f else 0
|
||||
cprint(f"Downloading `{f}`...", "white")
|
||||
downloader = ResumableDownloader(url, output_file, total_size)
|
||||
asyncio.run(downloader.download())
|
||||
|
||||
print(f"\nSuccessfully downloaded model to {output_dir}")
|
||||
cprint(f"\nMD5 Checksums are at: {output_dir / 'checklist.chk'}", "white")
|
||||
|
||||
|
||||
def run_download_cmd(args: argparse.Namespace, parser: argparse.ArgumentParser):
|
||||
from llama_models.sku_list import resolve_model
|
||||
|
||||
model = resolve_model(args.model_id)
|
||||
if model is None:
|
||||
parser.error(f"Model {args.model_id} not found")
|
||||
return
|
||||
|
||||
if args.source == "huggingface":
|
||||
_hf_download(model, args.hf_token, args.ignore_patterns, parser)
|
||||
else:
|
||||
meta_url = args.meta_url
|
||||
if not meta_url:
|
||||
meta_url = input(
|
||||
"Please provide the signed URL you received via email (e.g., https://llama3-1.llamameta.net/*?Policy...): "
|
||||
)
|
||||
except GatedRepoError:
|
||||
self.parser.error(
|
||||
"It looks like you are trying to access a gated repository. Please ensure you "
|
||||
"have access to the repository and have provided the proper Hugging Face API token "
|
||||
"using the option `--hf-token` or by running `huggingface-cli login`."
|
||||
"You can find your token by visiting https://huggingface.co/settings/tokens"
|
||||
)
|
||||
except RepositoryNotFoundError:
|
||||
self.parser.error(
|
||||
f"Repository '{args.repo_id}' not found on the Hugging Face Hub."
|
||||
)
|
||||
except Exception as e:
|
||||
self.parser.error(e)
|
||||
|
||||
print(f"Successfully downloaded model to {true_output_dir}")
|
||||
|
||||
def _meta_download(self, model: Model, meta_url: str):
|
||||
output_dir = Path(DEFAULT_CHECKPOINT_DIR) / model.descriptor()
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
info = llama_meta_net_info(model)
|
||||
|
||||
# I believe we can use some concurrency here if needed but not sure it is worth it
|
||||
for f in info.files:
|
||||
output_file = str(output_dir / f)
|
||||
url = meta_url.replace("*", f"{info.folder}/{f}")
|
||||
total_size = info.pth_size if "consolidated" in f else 0
|
||||
cprint(f"Downloading `{f}`...", "white")
|
||||
downloader = ResumableDownloader(url, output_file, total_size)
|
||||
asyncio.run(downloader.download())
|
||||
|
||||
def _run_download_cmd(self, args: argparse.Namespace):
|
||||
model = resolve_model(args.model_id)
|
||||
if model is None:
|
||||
self.parser.error(f"Model {args.model_id} not found")
|
||||
return
|
||||
|
||||
if args.source == "huggingface":
|
||||
self._hf_download(model, args.hf_token, args.ignore_patterns)
|
||||
else:
|
||||
meta_url = args.meta_url
|
||||
if not meta_url:
|
||||
meta_url = input(
|
||||
"Please provide the signed URL you received via email (e.g., https://llama3-1.llamameta.net/*?Policy...): "
|
||||
)
|
||||
assert meta_url is not None and "llama3-1.llamameta.net" in meta_url
|
||||
self._meta_download(model, meta_url)
|
||||
assert meta_url is not None and "llama3-1.llamameta.net" in meta_url
|
||||
_meta_download(model, meta_url)
|
||||
|
||||
|
||||
class ResumableDownloader:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue