forked from phoenix-oss/llama-stack-mirror
Introduce Llama stack distributions (#22)
* Add distribution CLI scaffolding * More progress towards `llama distribution install` * getting closer to a distro definition, distro install + configure works * Distribution server now functioning * read existing configuration, save enums properly * Remove inference uvicorn server entrypoint and llama inference CLI command * updated dependency and client model name * Improved exception handling * local imports for faster cli * undo a typo, add a passthrough distribution * implement full-passthrough in the server * add safety adapters, configuration handling, server + clients * cleanup, moving stuff to common, nuke utils * Add a Path() wrapper at the earliest place * fixes * Bring agentic system api to toolchain Add adapter dependencies and resolve adapters using a topological sort * refactor to reduce size of `agentic_system` * move straggler files and fix some important existing bugs * ApiSurface -> Api * refactor a method out * Adapter -> Provider * Make each inference provider into its own subdirectory * installation fixes * Rename Distribution -> DistributionSpec, simplify RemoteProviders * dict key instead of attr * update inference config to take model and not model_dir * Fix passthrough streaming, send headers properly not part of body :facepalm * update safety to use model sku ids and not model dirs * Update cli_reference.md * minor fixes * add DistributionConfig, fix a bug in model download * Make install + start scripts do proper configuration automatically * Update CLI_reference * Nuke fp8_requirements, fold fbgemm into common requirements * Update README, add newline between API surface configurations * Refactor download functionality out of the Command so can be reused * Add `llama model download` alias for `llama download` * Show message about checksum file so users can check themselves * Simpler intro statements * get ollama working * Reduce a bunch of dependencies from toolchain Some improvements to the distribution install script * Avoid using `conda run` since it buffers everything * update dependencies and rely on LLAMA_TOOLCHAIN_DIR for dev purposes * add validation for configuration input * resort imports * make optional subclasses default to yes for configuration * Remove additional_pip_packages; move deps to providers * for inline make 8b model the default * Add scripts to MANIFEST * allow installing from test.pypi.org * Fix #2 to help with testing packages * Must install llama-models at that same version first * fix PIP_ARGS --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Hardik Shah <hjshah@meta.com>
This commit is contained in:
parent
da4645a27a
commit
e830814399
115 changed files with 5839 additions and 1120 deletions
|
@ -1,299 +0,0 @@
|
|||
import httpx
|
||||
import uuid
|
||||
|
||||
from typing import AsyncGenerator
|
||||
|
||||
from ollama import AsyncClient
|
||||
|
||||
from llama_models.sku_list import resolve_model
|
||||
from llama_models.llama3_1.api.datatypes import (
|
||||
BuiltinTool,
|
||||
CompletionMessage,
|
||||
Message,
|
||||
StopReason,
|
||||
ToolCall,
|
||||
)
|
||||
from llama_models.llama3_1.api.tool_utils import ToolUtils
|
||||
|
||||
from .api.config import OllamaImplConfig
|
||||
from .api.datatypes import (
|
||||
ChatCompletionResponseEvent,
|
||||
ChatCompletionResponseEventType,
|
||||
ToolCallDelta,
|
||||
ToolCallParseStatus,
|
||||
)
|
||||
from .api.endpoints import (
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionRequest,
|
||||
Inference,
|
||||
)
|
||||
|
||||
# TODO: Eventually this will move to the llama cli model list command
|
||||
# mapping of Model SKUs to ollama models
|
||||
OLLAMA_SUPPORTED_SKUS = {
|
||||
"Meta-Llama3.1-8B-Instruct": "llama3.1:8b-instruct-fp16"
|
||||
# TODO: Add other variants for llama3.1
|
||||
}
|
||||
|
||||
|
||||
class OllamaInference(Inference):
|
||||
|
||||
def __init__(self, config: OllamaImplConfig) -> None:
|
||||
self.config = config
|
||||
self.model = config.model
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.client = AsyncClient(host=self.config.url)
|
||||
try:
|
||||
status = await self.client.pull(self.model)
|
||||
assert status['status'] == 'success', f"Failed to pull model {self.model} in ollama"
|
||||
except httpx.ConnectError:
|
||||
print("Ollama Server is not running, start it using `ollama serve` in a separate terminal")
|
||||
raise
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
def _messages_to_ollama_messages(self, messages: list[Message]) -> list:
|
||||
ollama_messages = []
|
||||
for message in messages:
|
||||
ollama_messages.append(
|
||||
{"role": message.role, "content": message.content}
|
||||
)
|
||||
|
||||
return ollama_messages
|
||||
|
||||
def resolve_ollama_model(self, model_name: str) -> str:
|
||||
model = resolve_model(model_name)
|
||||
assert (
|
||||
model is not None and
|
||||
model.descriptor(shorten_default_variant=True) in OLLAMA_SUPPORTED_SKUS
|
||||
), f"Unsupported model: {model_name}, use one of the supported models: {','.join(OLLAMA_SUPPORTED_SKUS.keys())}"
|
||||
|
||||
return OLLAMA_SUPPORTED_SKUS.get(model.descriptor(shorten_default_variant=True))
|
||||
|
||||
def get_ollama_chat_options(self, request: ChatCompletionRequest) -> dict:
|
||||
options = {}
|
||||
if request.sampling_params is not None:
|
||||
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
|
||||
if getattr(request.sampling_params, attr):
|
||||
options[attr] = getattr(request.sampling_params, attr)
|
||||
if (
|
||||
request.sampling_params.repetition_penalty is not None and
|
||||
request.sampling_params.repetition_penalty != 1.0
|
||||
):
|
||||
options["repeat_penalty"] = request.sampling_params.repetition_penalty
|
||||
|
||||
return options
|
||||
|
||||
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
# accumulate sampling params and other options to pass to ollama
|
||||
options = self.get_ollama_chat_options(request)
|
||||
ollama_model = self.resolve_ollama_model(request.model)
|
||||
if not request.stream:
|
||||
r = await self.client.chat(
|
||||
model=ollama_model,
|
||||
messages=self._messages_to_ollama_messages(request.messages),
|
||||
stream=False,
|
||||
options=options,
|
||||
)
|
||||
stop_reason = None
|
||||
if r['done']:
|
||||
if r['done_reason'] == 'stop':
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif r['done_reason'] == 'length':
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
completion_message = decode_assistant_message_from_content(
|
||||
r['message']['content'],
|
||||
stop_reason,
|
||||
)
|
||||
yield ChatCompletionResponse(
|
||||
completion_message=completion_message,
|
||||
logprobs=None,
|
||||
)
|
||||
else:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.start,
|
||||
delta="",
|
||||
)
|
||||
)
|
||||
|
||||
stream = await self.client.chat(
|
||||
model=ollama_model,
|
||||
messages=self._messages_to_ollama_messages(request.messages),
|
||||
stream=True,
|
||||
options=options,
|
||||
)
|
||||
|
||||
buffer = ""
|
||||
ipython = False
|
||||
stop_reason = None
|
||||
|
||||
async for chunk in stream:
|
||||
# check if ollama is done
|
||||
if chunk['done']:
|
||||
if chunk['done_reason'] == 'stop':
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif chunk['done_reason'] == 'length':
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
break
|
||||
|
||||
text = chunk['message']['content']
|
||||
|
||||
# check if its a tool call ( aka starts with <|python_tag|> )
|
||||
if not ipython and text.startswith("<|python_tag|>"):
|
||||
ipython = True
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content="",
|
||||
parse_status=ToolCallParseStatus.started,
|
||||
),
|
||||
)
|
||||
)
|
||||
buffer = buffer[len("<|python_tag|>") :]
|
||||
continue
|
||||
|
||||
if ipython:
|
||||
if text == "<|eot_id|>":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
text = ""
|
||||
continue
|
||||
elif text == "<|eom_id|>":
|
||||
stop_reason = StopReason.end_of_message
|
||||
text = ""
|
||||
continue
|
||||
|
||||
buffer += text
|
||||
delta = ToolCallDelta(
|
||||
content=text,
|
||||
parse_status=ToolCallParseStatus.in_progress,
|
||||
)
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=delta,
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
else:
|
||||
buffer += text
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=text,
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
# parse tool calls and report errors
|
||||
message = decode_assistant_message_from_content(buffer, stop_reason)
|
||||
|
||||
parsed_tool_calls = len(message.tool_calls) > 0
|
||||
if ipython and not parsed_tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content="",
|
||||
parse_status=ToolCallParseStatus.failure,
|
||||
),
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
for tool_call in message.tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content=tool_call,
|
||||
parse_status=ToolCallParseStatus.success,
|
||||
),
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.complete,
|
||||
delta="",
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
#TODO: Consolidate this with impl in llama-models
|
||||
def decode_assistant_message_from_content(
|
||||
content: str,
|
||||
stop_reason: StopReason,
|
||||
) -> CompletionMessage:
|
||||
ipython = content.startswith("<|python_tag|>")
|
||||
if ipython:
|
||||
content = content[len("<|python_tag|>") :]
|
||||
|
||||
if content.endswith("<|eot_id|>"):
|
||||
content = content[: -len("<|eot_id|>")]
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif content.endswith("<|eom_id|>"):
|
||||
content = content[: -len("<|eom_id|>")]
|
||||
stop_reason = StopReason.end_of_message
|
||||
|
||||
tool_name = None
|
||||
tool_arguments = {}
|
||||
|
||||
custom_tool_info = ToolUtils.maybe_extract_custom_tool_call(content)
|
||||
if custom_tool_info is not None:
|
||||
tool_name, tool_arguments = custom_tool_info
|
||||
# Sometimes when agent has custom tools alongside builin tools
|
||||
# Agent responds for builtin tool calls in the format of the custom tools
|
||||
# This code tries to handle that case
|
||||
if tool_name in BuiltinTool.__members__:
|
||||
tool_name = BuiltinTool[tool_name]
|
||||
tool_arguments = {
|
||||
"query": list(tool_arguments.values())[0],
|
||||
}
|
||||
else:
|
||||
builtin_tool_info = ToolUtils.maybe_extract_builtin_tool_call(content)
|
||||
if builtin_tool_info is not None:
|
||||
tool_name, query = builtin_tool_info
|
||||
tool_arguments = {
|
||||
"query": query,
|
||||
}
|
||||
if tool_name in BuiltinTool.__members__:
|
||||
tool_name = BuiltinTool[tool_name]
|
||||
elif ipython:
|
||||
tool_name = BuiltinTool.code_interpreter
|
||||
tool_arguments = {
|
||||
"code": content,
|
||||
}
|
||||
|
||||
tool_calls = []
|
||||
if tool_name is not None and tool_arguments is not None:
|
||||
call_id = str(uuid.uuid4())
|
||||
tool_calls.append(
|
||||
ToolCall(
|
||||
call_id=call_id,
|
||||
tool_name=tool_name,
|
||||
arguments=tool_arguments,
|
||||
)
|
||||
)
|
||||
content = ""
|
||||
|
||||
if stop_reason is None:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
return CompletionMessage(
|
||||
content=content,
|
||||
stop_reason=stop_reason,
|
||||
tool_calls=tool_calls,
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue