chore: rename task_config to benchmark_config (#1397)

# What does this PR do?

- This was missed from previous deprecation:
https://github.com/meta-llama/llama-stack/pull/1186
- Part of https://github.com/meta-llama/llama-stack/issues/1396

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
```
pytest -v -s --nbval-lax ./llama-stack/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb 
```

[//]: # (## Documentation)
This commit is contained in:
Xi Yan 2025-03-04 12:44:04 -08:00 committed by GitHub
parent 158b6dc404
commit e9a37bad63
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 55 additions and 46 deletions

View file

@ -83,7 +83,7 @@ class MetaReferenceEvalImpl(
async def run_eval(
self,
benchmark_id: str,
task_config: BenchmarkConfig,
benchmark_config: BenchmarkConfig,
) -> Job:
task_def = self.benchmarks[benchmark_id]
dataset_id = task_def.dataset_id
@ -92,13 +92,13 @@ class MetaReferenceEvalImpl(
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.eval.value))
all_rows = await self.datasetio_api.get_rows_paginated(
dataset_id=dataset_id,
rows_in_page=(-1 if task_config.num_examples is None else task_config.num_examples),
rows_in_page=(-1 if benchmark_config.num_examples is None else benchmark_config.num_examples),
)
res = await self.evaluate_rows(
benchmark_id=benchmark_id,
input_rows=all_rows.rows,
scoring_functions=scoring_functions,
task_config=task_config,
benchmark_config=benchmark_config,
)
# TODO: currently needs to wait for generation before returning
@ -108,9 +108,9 @@ class MetaReferenceEvalImpl(
return Job(job_id=job_id)
async def _run_agent_generation(
self, input_rows: List[Dict[str, Any]], task_config: BenchmarkConfig
self, input_rows: List[Dict[str, Any]], benchmark_config: BenchmarkConfig
) -> List[Dict[str, Any]]:
candidate = task_config.eval_candidate
candidate = benchmark_config.eval_candidate
create_response = await self.agents_api.create_agent(candidate.config)
agent_id = create_response.agent_id
@ -151,9 +151,9 @@ class MetaReferenceEvalImpl(
return generations
async def _run_model_generation(
self, input_rows: List[Dict[str, Any]], task_config: BenchmarkConfig
self, input_rows: List[Dict[str, Any]], benchmark_config: BenchmarkConfig
) -> List[Dict[str, Any]]:
candidate = task_config.eval_candidate
candidate = benchmark_config.eval_candidate
assert candidate.sampling_params.max_tokens is not None, "SamplingParams.max_tokens must be provided"
generations = []
@ -189,13 +189,13 @@ class MetaReferenceEvalImpl(
benchmark_id: str,
input_rows: List[Dict[str, Any]],
scoring_functions: List[str],
task_config: BenchmarkConfig,
benchmark_config: BenchmarkConfig,
) -> EvaluateResponse:
candidate = task_config.eval_candidate
candidate = benchmark_config.eval_candidate
if candidate.type == "agent":
generations = await self._run_agent_generation(input_rows, task_config)
generations = await self._run_agent_generation(input_rows, benchmark_config)
elif candidate.type == "model":
generations = await self._run_model_generation(input_rows, task_config)
generations = await self._run_model_generation(input_rows, benchmark_config)
else:
raise ValueError(f"Invalid candidate type: {candidate.type}")
@ -204,9 +204,9 @@ class MetaReferenceEvalImpl(
input_r | generated_r for input_r, generated_r in zip(input_rows, generations, strict=False)
]
if task_config.scoring_params is not None:
if benchmark_config.scoring_params is not None:
scoring_functions_dict = {
scoring_fn_id: task_config.scoring_params.get(scoring_fn_id, None)
scoring_fn_id: benchmark_config.scoring_params.get(scoring_fn_id, None)
for scoring_fn_id in scoring_functions
}
else: