feat: add batch inference API to llama stack inference (#1945)

# What does this PR do?

This PR adds two methods to the Inference API:
- `batch_completion`
- `batch_chat_completion`

The motivation is for evaluations targeting a local inference engine
(like meta-reference or vllm) where batch APIs provide for a substantial
amount of acceleration.

Why did I not add this to `Api.batch_inference` though? That just
resulted in a _lot_ more book-keeping given the structure of Llama
Stack. Had I done that, I would have needed to create a notion of a
"batch model" resource, setup routing based on that, etc. This does not
sound ideal.

So what's the future of the batch inference API? I am not sure. Maybe we
can keep it for true _asynchronous_ execution. So you can submit
requests, and it can return a Job instance, etc.

## Test Plan

Run meta-reference-gpu using:
```bash
export INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct
export INFERENCE_CHECKPOINT_DIR=../checkpoints/Llama-4-Scout-17B-16E-Instruct-20250331210000
export MODEL_PARALLEL_SIZE=4
export MAX_BATCH_SIZE=32
export MAX_SEQ_LEN=6144

LLAMA_MODELS_DEBUG=1 llama stack run meta-reference-gpu
```

Then run the batch inference test case.
This commit is contained in:
Ashwin Bharambe 2025-04-12 11:41:12 -07:00 committed by GitHub
parent 854c2ad264
commit f34f22f8c7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
23 changed files with 698 additions and 389 deletions

View file

@ -537,5 +537,31 @@
}
]
}
},
"batch_completion": {
"data": {
"qa_pairs": [
{
"question": "What is the capital of France?",
"answer": "Paris"
},
{
"question": "Who wrote the book '1984'?",
"answer": "George Orwell"
},
{
"question": "Which planet has rings around it with a name starting with letter S?",
"answer": "Saturn"
},
{
"question": "When did the first moon landing happen?",
"answer": "1969"
},
{
"question": "What word says 'hello' in Spanish?",
"answer": "Hola"
}
]
}
}
}

View file

@ -44,5 +44,18 @@
"year_retired": "2003"
}
}
},
"batch_completion": {
"data": {
"contents": [
"Micheael Jordan is born in ",
"Roses are red, violets are ",
"If you had a million dollars, what would you do with it? ",
"All you need is ",
"The capital of France is ",
"It is a good day to ",
"The answer to the universe is "
]
}
}
}