Inference to use provider resource id to register and validate (#428)

This PR changes the way model id gets translated to the final model name
that gets passed through the provider.
Major changes include:
1) Providers are responsible for registering an object and as part of
the registration returning the object with the correct provider specific
name of the model provider_resource_id
2) To help with the common look ups different names a new ModelLookup
class is created.



Tested all inference providers including together, fireworks, vllm,
ollama, meta reference and bedrock
This commit is contained in:
Dinesh Yeduguru 2024-11-12 20:02:00 -08:00 committed by GitHub
parent e51107e019
commit fdff24e77a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
21 changed files with 460 additions and 290 deletions

View file

@ -7,15 +7,20 @@
from typing import AsyncGenerator
import httpx
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from ollama import AsyncClient
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
)
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
@ -33,19 +38,45 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
request_has_media,
)
OLLAMA_SUPPORTED_MODELS = {
"Llama3.1-8B-Instruct": "llama3.1:8b-instruct-fp16",
"Llama3.1-70B-Instruct": "llama3.1:70b-instruct-fp16",
"Llama3.2-1B-Instruct": "llama3.2:1b-instruct-fp16",
"Llama3.2-3B-Instruct": "llama3.2:3b-instruct-fp16",
"Llama-Guard-3-8B": "llama-guard3:8b",
"Llama-Guard-3-1B": "llama-guard3:1b",
"Llama3.2-11B-Vision-Instruct": "x/llama3.2-vision:11b-instruct-fp16",
}
model_aliases = [
build_model_alias(
"llama3.1:8b-instruct-fp16",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias(
"llama3.1:70b-instruct-fp16",
CoreModelId.llama3_1_70b_instruct.value,
),
build_model_alias(
"llama3.2:1b-instruct-fp16",
CoreModelId.llama3_2_1b_instruct.value,
),
build_model_alias(
"llama3.2:3b-instruct-fp16",
CoreModelId.llama3_2_3b_instruct.value,
),
build_model_alias(
"llama-guard3:8b",
CoreModelId.llama_guard_3_8b.value,
),
build_model_alias(
"llama-guard3:1b",
CoreModelId.llama_guard_3_1b.value,
),
build_model_alias(
"x/llama3.2-vision:11b-instruct-fp16",
CoreModelId.llama3_2_11b_vision_instruct.value,
),
]
class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
class OllamaInferenceAdapter(Inference, ModelRegistryHelper, ModelsProtocolPrivate):
def __init__(self, url: str) -> None:
ModelRegistryHelper.__init__(
self,
model_aliases=model_aliases,
)
self.url = url
self.formatter = ChatFormat(Tokenizer.get_instance())
@ -65,44 +96,18 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
async def shutdown(self) -> None:
pass
async def register_model(self, model: Model) -> None:
if model.identifier not in OLLAMA_SUPPORTED_MODELS:
raise ValueError(f"Model {model.identifier} is not supported by Ollama")
async def list_models(self) -> List[Model]:
ollama_to_llama = {v: k for k, v in OLLAMA_SUPPORTED_MODELS.items()}
ret = []
res = await self.client.ps()
for r in res["models"]:
if r["model"] not in ollama_to_llama:
print(f"Ollama is running a model unknown to Llama Stack: {r['model']}")
continue
llama_model = ollama_to_llama[r["model"]]
print(f"Found model {llama_model} in Ollama")
ret.append(
Model(
identifier=llama_model,
metadata={
"ollama_model": r["model"],
},
)
)
return ret
async def completion(
self,
model: str,
model_id: str,
content: InterleavedTextMedia,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
model = await self.model_store.get_model(model_id)
request = CompletionRequest(
model=model,
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
stream=stream,
@ -148,7 +153,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
async def chat_completion(
self,
model: str,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
@ -158,8 +163,10 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
model = await self.model_store.get_model(model_id)
print(f"model={model}")
request = ChatCompletionRequest(
model=model,
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
@ -197,7 +204,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
else:
input_dict["raw"] = True
input_dict["prompt"] = chat_completion_request_to_prompt(
request, self.formatter
request, self.get_llama_model(request.model), self.formatter
)
else:
assert (
@ -207,7 +214,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
input_dict["raw"] = True
return {
"model": OLLAMA_SUPPORTED_MODELS[request.model],
"model": request.model,
**input_dict,
"options": sampling_options,
"stream": request.stream,
@ -271,7 +278,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
async def embeddings(
self,
model: str,
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()