forked from phoenix-oss/llama-stack-mirror
2 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
|
3c72c034e6
|
[remove import *] clean up import *'s (#689)
# What does this PR do? - as title, cleaning up `import *`'s - upgrade tests to make them more robust to bad model outputs - remove import *'s in llama_stack/apis/* (skip __init__ modules) <img width="465" alt="image" src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2" /> - run `sh run_openapi_generator.sh`, no types gets affected ## Test Plan ### Providers Tests **agents** ``` pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8 ``` **inference** ```bash # meta-reference torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py # together pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py ``` **safety** ``` pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B ``` **memory** ``` pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384 ``` **scoring** ``` pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py ``` **datasetio** ``` pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py ``` **eval** ``` pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py ``` ### Client-SDK Tests ``` LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk ``` ### llama-stack-apps ``` PORT=5000 LOCALHOST=localhost python -m examples.agents.hello $LOCALHOST $PORT python -m examples.agents.inflation $LOCALHOST $PORT python -m examples.agents.podcast_transcript $LOCALHOST $PORT python -m examples.agents.rag_as_attachments $LOCALHOST $PORT python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT # Vision model python -m examples.interior_design_assistant.app python -m examples.agent_store.app $LOCALHOST $PORT ``` ### CLI ``` which llama llama model prompt-format -m Llama3.2-11B-Vision-Instruct llama model list llama stack list-apis llama stack list-providers inference llama stack build --template ollama --image-type conda ``` ### Distributions Tests **ollama** ``` llama stack build --template ollama --image-type conda ollama run llama3.2:1b-instruct-fp16 llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct ``` **fireworks** ``` llama stack build --template fireworks --image-type conda llama stack run ./llama_stack/templates/fireworks/run.yaml ``` **together** ``` llama stack build --template together --image-type conda llama stack run ./llama_stack/templates/together/run.yaml ``` **tgi** ``` llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct ``` ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests. |
||
|
fcd6449519
|
Telemetry API redesign (#525)
# What does this PR do? Change the Telemetry API to be able to support different use cases like returning traces for the UI and ability to export for Evals. Other changes: * Add a new trace_protocol decorator to decorate all our API methods so that any call to them will automatically get traced across all impls. * There is some issue with the decorator pattern of span creation when using async generators, where there are multiple yields with in the same context. I think its much more explicit by using the explicit context manager pattern using with. I moved the span creations in agent instance to be using with * Inject session id at the turn level, which should quickly give us all traces across turns for a given session Addresses #509 ## Test Plan ``` llama stack run /Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml PYTHONPATH=. python -m examples.agents.rag_with_memory_bank localhost 5000 curl -X POST 'http://localhost:5000/alpha/telemetry/query-traces' \ -H 'Content-Type: application/json' \ -d '{ "attribute_filters": [ { "key": "session_id", "op": "eq", "value": "dd667b87-ca4b-4d30-9265-5a0de318fc65" }], "limit": 100, "offset": 0, "order_by": ["start_time"] }' | jq . [ { "trace_id": "6902f54b83b4b48be18a6f422b13e16f", "root_span_id": "5f37b85543afc15a", "start_time": "2024-12-04T08:08:30.501587", "end_time": "2024-12-04T08:08:36.026463" }, { "trace_id": "92227dac84c0615ed741be393813fb5f", "root_span_id": "af7c5bb46665c2c8", "start_time": "2024-12-04T08:08:36.031170", "end_time": "2024-12-04T08:08:41.693301" }, { "trace_id": "7d578a6edac62f204ab479fba82f77b6", "root_span_id": "1d935e3362676896", "start_time": "2024-12-04T08:08:41.695204", "end_time": "2024-12-04T08:08:47.228016" }, { "trace_id": "dbd767d76991bc816f9f078907dc9ff2", "root_span_id": "f5a7ee76683b9602", "start_time": "2024-12-04T08:08:47.234578", "end_time": "2024-12-04T08:08:53.189412" } ] curl -X POST 'http://localhost:5000/alpha/telemetry/get-span-tree' \ -H 'Content-Type: application/json' \ -d '{ "span_id" : "6cceb4b48a156913", "max_depth": 2, "attributes_to_return": ["input"] }' | jq . % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 875 100 790 100 85 18462 1986 --:--:-- --:--:-- --:--:-- 20833 { "span_id": "6cceb4b48a156913", "trace_id": "dafa796f6aaf925f511c04cd7c67fdda", "parent_span_id": "892a66d726c7f990", "name": "retrieve_rag_context", "start_time": "2024-12-04T09:28:21.781995", "end_time": "2024-12-04T09:28:21.913352", "attributes": { "input": [ "{\"role\":\"system\",\"content\":\"You are a helpful assistant\"}", "{\"role\":\"user\",\"content\":\"What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.\",\"context\":null}" ] }, "children": [ { "span_id": "1a2df181854064a8", "trace_id": "dafa796f6aaf925f511c04cd7c67fdda", "parent_span_id": "6cceb4b48a156913", "name": "MemoryRouter.query_documents", "start_time": "2024-12-04T09:28:21.787620", "end_time": "2024-12-04T09:28:21.906512", "attributes": { "input": null }, "children": [], "status": "ok" } ], "status": "ok" } ``` <img width="1677" alt="Screenshot 2024-12-04 at 9 42 56 AM" src="https://github.com/user-attachments/assets/4d3cea93-05ce-415a-93d9-4b1628631bf8"> |