# What does this PR do?
The commit addresses the Ruff warning B008 by refactoring the code to
avoid calling SamplingParams() directly in function argument defaults.
Instead, it either uses Field(default_factory=SamplingParams) for
Pydantic models or sets the default to None and instantiates
SamplingParams inside the function body when the argument is None.
Signed-off-by: Sébastien Han <seb@redhat.com>
You now run the integration tests with these options:
```bash
Custom options:
--stack-config=STACK_CONFIG
a 'pointer' to the stack. this can be either be:
(a) a template name like `fireworks`, or
(b) a path to a run.yaml file, or
(c) an adhoc config spec, e.g.
`inference=fireworks,safety=llama-guard,agents=meta-
reference`
--env=ENV Set environment variables, e.g. --env KEY=value
--text-model=TEXT_MODEL
comma-separated list of text models. Fixture name:
text_model_id
--vision-model=VISION_MODEL
comma-separated list of vision models. Fixture name:
vision_model_id
--embedding-model=EMBEDDING_MODEL
comma-separated list of embedding models. Fixture name:
embedding_model_id
--safety-shield=SAFETY_SHIELD
comma-separated list of safety shields. Fixture name:
shield_id
--judge-model=JUDGE_MODEL
comma-separated list of judge models. Fixture name:
judge_model_id
--embedding-dimension=EMBEDDING_DIMENSION
Output dimensionality of the embedding model to use for
testing. Default: 384
--record-responses Record new API responses instead of using cached ones.
--report=REPORT Path where the test report should be written, e.g.
--report=/path/to/report.md
```
Importantly, if you don't specify any of the models (text-model,
vision-model, etc.) the relevant tests will get **skipped!**
This will make running tests somewhat more annoying since all options
will need to be specified. We will make this easier by adding some easy
wrapper yaml configs.
## Test Plan
Example:
```bash
ashwin@ashwin-mbp ~/local/llama-stack/tests/integration (unify_tests) $
LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/test_text_inference.py \
--text-model meta-llama/Llama-3.2-3B-Instruct
```
# Summary:
Client side change in
https://github.com/meta-llama/llama-stack-client-python/pull/180
Changes the resume_turn API to accept `ToolResponse` instead of
`ToolResponseMessage`:
1. `ToolResponse` contains `metadata`
2. `ToolResponseMessage` is a concept for model inputs. Here we are just
submitting the outputs of tool execution.
# Test Plan:
Ran integration tests with newly added test using client tool with
metadata
LLAMA_STACK_CONFIG=fireworks pytest -s -v
tests/integration/agents/test_agents.py --safety-shield
meta-llama/Llama-Guard-3-8B --record-responses
# What does this PR do?
Inference router computes the token usage related metrics for all
providers and returns the metrics as part of response and also logs to
telemetry.
## Test Plan
LLAMA_STACK_DISABLE_VERSION_CHECK=true llama stack run
~/.llama/distributions/fireworks/fireworks-run.yaml
```
curl --request POST \
--url http://localhost:8321/v1/inference/chat-completion \
--header 'content-type: application/json' \
--data '{
"model_id": "meta-llama/Llama-3.1-70B-Instruct",
"messages": [
{
"role": "user",
"content": {
"type": "text",
"text": "where do humans live"
}
}
],
"stream": false
}' | jq .
{
"metrics": [
{
"trace_id": "yjv1tf0jS1evOyPm",
"span_id": "WqYKvg0_",
"timestamp": "2025-02-27T18:55:10.770903Z",
"attributes": {
"model_id": "meta-llama/Llama-3.1-70B-Instruct",
"provider_id": "fireworks"
},
"type": "metric",
"metric": "prompt_tokens",
"value": 10,
"unit": "tokens"
},
{
"trace_id": "yjv1tf0jS1evOyPm",
"span_id": "WqYKvg0_",
"timestamp": "2025-02-27T18:55:10.770916Z",
"attributes": {
"model_id": "meta-llama/Llama-3.1-70B-Instruct",
"provider_id": "fireworks"
},
"type": "metric",
"metric": "completion_tokens",
"value": 411,
"unit": "tokens"
},
{
"trace_id": "yjv1tf0jS1evOyPm",
"span_id": "WqYKvg0_",
"timestamp": "2025-02-27T18:55:10.770919Z",
"attributes": {
"model_id": "meta-llama/Llama-3.1-70B-Instruct",
"provider_id": "fireworks"
},
"type": "metric",
"metric": "total_tokens",
"value": 421,
"unit": "tokens"
}
],
"completion_message": {
"role": "assistant",
"content": "Humans live in various parts of the world, inhabiting almost every continent, country, and region. Here's a breakdown of where humans live:\n\n1. **Continents:** Humans inhabit all seven continents:\n\t* Africa\n\t* Antarctica (research stations only)\n\t* Asia\n\t* Australia\n\t* Europe\n\t* North America\n\t* South America\n2. **Countries:** There are 196 countries recognized by the United Nations, and humans live in almost all of them.\n3. **Regions:** Humans live in diverse regions, including:\n\t* Deserts (e.g., Sahara, Mojave)\n\t* Forests (e.g., Amazon, Congo)\n\t* Grasslands (e.g., Prairies, Steppes)\n\t* Mountains (e.g., Himalayas, Andes)\n\t* Oceans (e.g., coastal areas, islands)\n\t* Tundras (e.g., Arctic, sub-Arctic)\n4. **Cities and towns:** Many humans live in urban areas, such as cities and towns, which are often located near:\n\t* Coastlines\n\t* Rivers\n\t* Lakes\n\t* Mountains\n5. **Rural areas:** Some humans live in rural areas, such as:\n\t* Villages\n\t* Farms\n\t* Countryside\n6. **Islands:** Humans inhabit many islands, including:\n\t* Tropical islands (e.g., Hawaii, Maldives)\n\t* Arctic islands (e.g., Greenland, Iceland)\n\t* Continental islands (e.g., Great Britain, Ireland)\n7. **Extreme environments:** Humans also live in extreme environments, such as:\n\t* High-altitude areas (e.g., Tibet, Andes)\n\t* Low-altitude areas (e.g., Death Valley, Dead Sea)\n\t* Areas with extreme temperatures (e.g., Arctic, Sahara)\n\nOverall, humans have adapted to live in a wide range of environments and ecosystems around the world.",
"stop_reason": "end_of_turn",
"tool_calls": []
},
"logprobs": null
}
```
```
LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/integration/inference
======================================================================== short test summary info =========================================================================
FAILED tests/integration/inference/test_text_inference.py::test_text_chat_completion_tool_calling_tools_not_in_request[txt=8B:vis=11B-inference:chat_completion:tool_calling_tools_absent-True] - ValueError: Unsupported tool prompt format: ToolPromptFormat.json
FAILED tests/integration/inference/test_text_inference.py::test_text_chat_completion_tool_calling_tools_not_in_request[txt=8B:vis=11B-inference:chat_completion:tool_calling_tools_absent-False] - ValueError: Unsupported tool prompt format: ToolPromptFormat.json
FAILED tests/integration/inference/test_vision_inference.py::test_image_chat_completion_non_streaming[txt=8B:vis=11B] - fireworks.client.error.InvalidRequestError: {'error': {'object': 'error', 'type': 'invalid_request_error', 'message': 'Failed to decode image cannot identify image f...
FAILED tests/integration/inference/test_vision_inference.py::test_image_chat_completion_streaming[txt=8B:vis=11B] - fireworks.client.error.InvalidRequestError: {'error': {'object': 'error', 'type': 'invalid_request_error', 'message': 'Failed to decode image cannot identify image f...
========================================================= 4 failed, 16 passed, 23 xfailed, 17 warnings in 44.36s =========================================================
```
# What does this PR do?
- add ability to register a llm-as-judge scoring function with custom
judge prompts / params.
- Closes https://github.com/meta-llama/llama-stack/issues/1395
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
**Via CLI**
```
llama-stack-client scoring_functions register \
--scoring-fn-id "llm-as-judge::my-prompt" \
--description "my custom judge" \
--return-type '{"type": "string"}' \
--provider-id "llm-as-judge" \
--provider-scoring-fn-id "my-prompt" \
--params '{"type": "llm_as_judge", "judge_model": "meta-llama/Llama-3.2-3B-Instruct", "prompt_template": "always output 1.0"}'
```
<img width="1373" alt="image"
src="https://github.com/user-attachments/assets/7c6fc0ae-64fe-4581-8927-a9d8d746bd72"
/>
- Unit test will be addressed with
https://github.com/meta-llama/llama-stack/issues/1396
[//]: # (## Documentation)
# What does this PR do?
The agent API allows to query multiple DBs using the `vector_db_ids`
argument of the `rag` tool:
```py
toolgroups=[
{
"name": "builtin::rag",
"args": {"vector_db_ids": [vector_db_id]},
}
],
```
This means that multiple DBs can be used to compose an aggregated
context by executing the query on each of them.
When documents are passed to the next agent turn, there is no explicit
way to configure the vector DB where the embeddings will be ingested. In
such cases, we can assume that:
- if any `vector_db_ids` is given, we use the first one (it probably
makes sense to assume that it's the only one in the list, otherwise we
should loop on all the given DBs to have a consistent ingestion)
- if no `vector_db_ids` is given, we can use the current logic to
generate a default DB using the default provider. If multiple providers
are defined, the API will fail as expected: the user has to provide
details on where to ingest the documents.
(Closes#1270)
## Test Plan
The issue description details how to replicate the problem.
[//]: # (## Documentation)
---------
Signed-off-by: Daniele Martinoli <dmartino@redhat.com>
Summary:
Test Plan:
added new test
LLAMA_STACK_CONFIG=fireworks pytest -s -v
tests/api/agents/test_agents.py --safety-shield
meta-llama/Llama-Guard-3-8B
# What does this PR do?
- This was missed from previous deprecation:
https://github.com/meta-llama/llama-stack/pull/1186
- Part of https://github.com/meta-llama/llama-stack/issues/1396
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
```
pytest -v -s --nbval-lax ./llama-stack/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb
```
[//]: # (## Documentation)
# What does this PR do?
- Deprecate allow_turn_resume flag as this is used for staying backward
compat.
- Closes https://github.com/meta-llama/llama-stack/issues/1363
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
```
LLAMA_STACK_CONFIG=fireworks pytest -v tests/api/agents/test_agents.py --inference-model "meta-llama/Llama-3.3-70B-Instruct" --record-responses
```
<img width="1054" alt="image"
src="https://github.com/user-attachments/assets/d31de2d4-0953-41e1-a71a-7e1579fa351a"
/>
[//]: # (## Documentation)
Summary:
1. The `tools` parameter we construct to pass the inference API is
non-deterministic. As a result, our recordable mocks is flaky as the
ordering change sometimes. This PR makes it so that `tools` ordering is
deterministic and aligned with the order user specified.
2. In recordable mock key generation, client tool's parameter type was
'str' and now is 'string' for some reason. I didn't dig into exactly
why, but just regenerated the fixtures.
Test Plan:
Regenerate mocks:
```
LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/agents/test_agents.py --safety-shield meta-llama/Llama-Guard-3-8B --record-responses
```
Rerun tests without --record-responses:
```
LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/agents/test_agents.py --safety-shield meta-llama/Llama-Guard-3-8B
```
# What does this PR do?
We currently use `max_infer_iters` in 2 different ways
1/ Server: track number of times
2/ Client side: track number of times we send `resume_turn` request
This PR gets rid of the need of (2) and makes server track total number
of times we perform inference within a Turn
**NOTE**
The PR will assume StopReason is set to
- end_of_message: turn is not finished, we could be waiting for client
tool call responses
- end_of_turn: if the entire turn is finished and there's no more things
to be done.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
```
LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v tests/client-sdk/agents/test_agents.py::test_custom_tool_infinite_loop --inference-model "meta-llama/Llama-3.3-70B-Instruct"
```
[//]: # (## Documentation)
# What does this PR do?
We want to bundle a bunch of (typically remote) providers in a distro
template and be able to configure them "on the fly" via environment
variables. So far, we have been able to do this with simple env var
replacements. However, sometimes you want to only conditionally enable
providers (because the relevant remote services may not be alive, or
relevant.) This was not possible until now.
To aid this, we add a simple (bash-like) env var replacement
enhancement: `${env.FOO+bar}` evaluates to `bar` if the variable is SET
and evaluates to empty string if it is not. On top of that, we update
our main resolver to ignore any provider whose ID is null.
This allows using the distro like this:
```bash
llama stack run dev --env CHROMADB_URL=http://localhost:6001 --env ENABLE_CHROMADB=1
```
when only Chroma is UP. This disables the other `pgvector` provider in
the run configuration.
## Test Plan
Hard code `chromadb` as the vector io provider inside
`test_vector_io.py` and run:
```bash
LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -s -v tests/client-sdk/vector_io/ --embedding-model all-MiniLM-L6-v2
```
# What does this PR do?
- using `eval` is a security risk
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
- see https://github.com/meta-llama/llama-stack/pull/1327
cc @SLR722 we will need to update the corresponding dataset via
```python
def update_to_json_str():
dataset = datasets.load_dataset(...)
processed_dataset = dataset[split].map(
lambda x: {
"column": json.dumps(eval(x["column"]))
}
)
processed_dataset.push_to_hub(...)
```
[//]: # (## Documentation)
# What does this PR do?
- Using `eval` on server is a security risk
- Replace `eval` with `json.loads`
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
```
pytest -v -s --nbval-lax ./llama-stack/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb
```
<img width="747" alt="image"
src="https://github.com/user-attachments/assets/7aff3d95-0b12-4394-b9d0-aeff791eee38"
/>
[//]: # (## Documentation)
Original telemetry outputs for agent turns look like this.
Note: how output was a `str(message)` making it difficult to read them
back for downstream tasks ( eg. building eval datasets )
```
{
│ │ 'input': [
│ │ │ '{"role":"system","content":"You are a helpful assistant. Use search tool to answer the questions. "}',
│ │ │ '{"role":"user","content":"Which teams played in the NBA western conference finals of 2024","context":null}'
│ │ ],
│ │ 'output': "content: tool_calls: [ToolCall(call_id='8b7294ec-a83f-4798-ad8f-6bed662f08b6', tool_name=<BuiltinTool.brave_search: 'brave_search'>, arguments={'query': 'NBA Western Conference Finals 2024 teams'})]"
│ },
```
Updated the outputs to be structured .
## Test
```python
import uuid
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
model_id = "meta-llama/Llama-3.1-8B-Instruct"
agent_config = AgentConfig(
model=model_id,
instructions="You are a helpful assistant who will use the web search tools to help with answering questions.\nOnly provide final answer in short without writing full sentences. Use web search",
toolgroups=["builtin::websearch"],
enable_session_persistence=True,
)
agent = Agent(client, agent_config)
session_id = agent.create_session(uuid.uuid4().hex)
response = agent.create_turn(
messages=[
{
"role": "user",
"content": "latest news about llama stack",
}
],
session_id=session_id,
stream=False,
)
pprint(response)
```
Output:
```
Turn(
│ input_messages=[UserMessage(content='latest news about llama stack', role='user', context=None)],
│ output_message=CompletionMessage(
│ │ content="The latest news about Llama Stack is that Meta has released Llama 3.2, which includes small and medium-sized vision LLMs (11B and 90B) and lightweight, text-only models (1B and 3B) that fit onto select edge and mobile devices. Additionally, Llama Stack distributions have been released to simplify the way developers work with Llama models in different environments. However, a critical vulnerability has been discovered in Meta's Llama-Stack, which puts AI applications at risk.",
│ │ role='assistant',
│ │ stop_reason='end_of_turn',
│ │ tool_calls=[]
│ ),
│ session_id='77379546-4598-485a-b4f4-84e5da28c513',
│ started_at=datetime.datetime(2025, 2, 27, 11, 2, 43, 915243, tzinfo=TzInfo(-08:00)),
│ steps=[
│ │ InferenceStep(
│ │ │ api_model_response=CompletionMessage(
│ │ │ │ content='',
│ │ │ │ role='assistant',
│ │ │ │ stop_reason='end_of_turn',
│ │ │ │ tool_calls=[
│ │ │ │ │ ToolCall(
│ │ │ │ │ │ arguments={'query': 'latest news llama stack'},
│ │ │ │ │ │ call_id='84c0fa10-e24a-4f91-a9ff-415a9ec0bb0b',
│ │ │ │ │ │ tool_name='brave_search'
│ │ │ │ │ )
│ │ │ │ ]
│ │ │ ),
│ │ │ step_id='81c16bd3-eb00-4721-8edc-f386e07391a3',
│ │ │ step_type='inference',
│ │ │ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45',
│ │ │ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 44, 637149, tzinfo=TzInfo(-08:00)),
│ │ │ started_at=datetime.datetime(2025, 2, 27, 11, 2, 43, 915831, tzinfo=TzInfo(-08:00))
│ │ ),
│ │ ToolExecutionStep(
│ │ │ step_id='4782d609-a62e-45f5-8d2a-25a43db46288',
│ │ │ step_type='tool_execution',
│ │ │ tool_calls=[
│ │ │ │ ToolCall(
│ │ │ │ │ arguments={'query': 'latest news llama stack'},
│ │ │ │ │ call_id='84c0fa10-e24a-4f91-a9ff-415a9ec0bb0b',
│ │ │ │ │ tool_name='brave_search'
│ │ │ │ )
│ │ │ ],
│ │ │ tool_responses=[
│ │ │ │ ToolResponse(
│ │ │ │ │ call_id='84c0fa10-e24a-4f91-a9ff-415a9ec0bb0b',
│ │ │ │ │ content='{"query": "latest news llama stack", "top_k": [{"title": "Llama 3.2: Revol. ....... Hacker News.", "score": 0.6186197, "raw_content": null}]}',
│ │ │ │ │ tool_name='brave_search',
│ │ │ │ │ metadata=None
│ │ │ │ )
│ │ │ ],
│ │ │ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45',
│ │ │ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 46, 272176, tzinfo=TzInfo(-08:00)),
│ │ │ started_at=datetime.datetime(2025, 2, 27, 11, 2, 44, 640743, tzinfo=TzInfo(-08:00))
│ │ ),
│ │ InferenceStep(
│ │ │ api_model_response=CompletionMessage(
│ │ │ │ content="The latest news about Llama Stack is that Meta has released Llama 3.2, which includes small and medium-sized vision LLMs (11B and 90B) and lightweight, text-only models (1B and 3B) that fit onto select edge and mobile devices. Additionally, Llama Stack distributions have been released to simplify the way developers work with Llama models in different environments. However, a critical vulnerability has been discovered in Meta's Llama-Stack, which puts AI applications at risk.",
│ │ │ │ role='assistant',
│ │ │ │ stop_reason='end_of_turn',
│ │ │ │ tool_calls=[]
│ │ │ ),
│ │ │ step_id='37994419-5da3-4e84-a010-8d9b85366262',
│ │ │ step_type='inference',
│ │ │ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45',
│ │ │ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 48, 961275, tzinfo=TzInfo(-08:00)),
│ │ │ started_at=datetime.datetime(2025, 2, 27, 11, 2, 46, 273168, tzinfo=TzInfo(-08:00))
│ │ )
│ ],
│ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45',
│ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 48, 962318, tzinfo=TzInfo(-08:00)),
│ output_attachments=[]
)
```
## Check for Telemetry
```python
agent_logs = []
for span in client.telemetry.query_spans(
attribute_filters=[
{"key": "session_id", "op": "eq", "value": session_id},
],
attributes_to_return=['input', 'output'],
):
agent_logs.append(span.attributes)
pprint(json.loads(agent_logs[-1]['output']))
```
```
{
│ 'content': "The latest news about Llama Stack is that Meta has released Llama 3.2, which includes small and medium-sized vision LLMs (11B and 90B) and lightweight, text-only models (1B and 3B) that fit onto select edge and mobile devices. Additionally, Llama Stack distributions have been released to simplify the way developers work with Llama models in different environments. However, a critical vulnerability has been discovered in Meta's Llama-Stack, which puts AI applications at risk.",
│ 'tool_calls': []
}
```
Now that remote-vllm include inline::sentence_transformers there is an
issue building the image:
Error building stack:
SentenceTransformersInferenceConfig.sample_run_config() got an
unexpected keyword argument '__distro_dir__'
To avoid that issue this fix extends the sample_run_config to accept
extra kwargs
# Summary:
Right now we would include toolgroup args when we encode messages with
tool_calls, which is confusing the model since they not in the function
description (see test plan for example).
# Test Plan:
Add a print statement before raw prompt is sent to providers (no good
way to test this currently)
Before:
```
cated in the same neighborhood?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n[knowledge_search(query="Laleli Mosque and Esma Sultan Mansion same neighborhood", vector_db_ids=["829a68735d744dc3830409dcc782964a"])]<|eot_id|><|start_header_id|>ipython<|end_header_id|>\n\nknowledge_search tool found 5 chunks:\nBEGIN of
```
Note the extra `vector_db_ids`
After
```
>user<|end_header_id|>\n\nAre the Laleli Mosque and Esma Sultan Mansion located in the same neighborhood?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n[knowledge_search(query="Laleli Mosque and Esma Sultan Mansion same neighborhood")]<|eot_id|><|start_header_id|>ipython<|end_header_id|>\n\nknowledge_search tool found
```
This is a follow up to:
https://github.com/meta-llama/llama-stack/pull/1140
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]
Avoid unnecessary GPU memory clean attempt when the GPU is not used for
training.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
With CPU:
```
INFO 2025-02-26 16:43:56,267 torchtune.utils._logging:121: Model checkpoint of size 6.43 GB saved to /Users/ihrachys/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/consolidated.00.pth
INFO 2025-02-26 16:43:56,274 torchtune.utils._logging:132: Adapter checkpoint of size 0.00 GB saved to /Users/ihrachys/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/adapter/adapter.pth
model_file_path /Users/ihrachys/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0
```
With CUDA:
```
INFO 2025-02-26 21:39:24,314 torchtune.utils._logging:121: Model checkpoint of size 6.43 GB saved to /home/ec2-user/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/consolidated.00.pth
INFO 2025-02-26 21:39:24,333 torchtune.utils._logging:132: Adapter checkpoint of size 0.00 GB saved to /home/ec2-user/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/adapter/adapter.pth
model_file_path /home/ec2-user/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0
```
[//]: # (## Documentation)
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# Summary:
Our tests sometimes error out with
```
========================== 11 passed, 342 warnings in 58.86s ==========================
Error exporting span to SQLite: Cannot operate on a closed database.
Fatal Python error: _enter_buffered_busy: could not acquire lock for <_io.BufferedWriter name='<stdout>'> at interpreter shutdown, possibly due to daemon threads
Python runtime state: finalizing (tstate=0x000000012af04280)
Current thread 0x00000001fa29c240 (most recent call first):
<no Python frame>
```
Usually able to repro this by running 10 times.
The proposed fix is to use threadsafe var for creating sqlite connection
to ensure connection is only used by one thread. Not 100% if this is the
fix, but am not able to repro with this.
# Test Plan:
Run 10 times and saw no more errors
```
for i in {1..10}; do
echo "=== Starting Run $i ==="
LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/agents/test_agents.py --safety-shield meta-llama/Llama-Guard-3-8B
if [[ $? -ne 0 ]]; then
echo "=== Run $i FAILED with exit code $? ==="
break
else
echo "=== Run $i PASSED ==="
fi
echo
done
```
Summary:
Lets the model decide which tool it needs to call to respond to a query.
Test Plan:
```
LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/ --safety-shield meta-llama/Llama-Guard-3-8B
```
Also evaluated on a small benchmark with 20 questions from HotpotQA.
With this PR and some prompting, the performance is 77% recall compared
to 50% currently.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with
[ReviewStack](https://reviewstack.dev/meta-llama/llama-stack/pull/1015).
* #1268
* #1239
* __->__ #1015
# What does this PR do?
This PR makes a couple of changes required to get the test
`tests/client-sdk/agents/test_agents.py::test_builtin_tool_web_search`
passing on the remote-vllm provider.
First, we adjust agent_instance to also pass in the description and
parameters of builtin tools. We need these parameters so we can pass the
tool's expected parameters into vLLM. The meta-reference implementations
may not have needed these for builtin tools, as they are able to take
advantage of the Llama-model specific support for certain builtin tools.
However, with vLLM, our server-side chat templates for tool calling
treat all tools the same and don't separate out Llama builtin vs custom
tools. So, we need to pass the full set of parameter definitions and
list of required parameters for builtin tools as well.
Next, we adjust the vllm streaming chat completion code to fix up some
edge cases where it was returning an extra ChatCompletionResponseEvent
with an empty ToolCall with empty string call_id, tool_name, and
arguments properties. This is a bug discovered after the above fix,
where after a successful tool invocation we were sending extra chunks
back to the client with these empty ToolCalls.
## Test Plan
With these changes, the following test that previously failed now
passes:
```
VLLM_URL="http://localhost:8000/v1" \
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
LLAMA_STACK_CONFIG=remote-vllm \
python -m pytest -v \
tests/client-sdk/agents/test_agents.py::test_builtin_tool_web_search \
--inference-model "meta-llama/Llama-3.2-3B-Instruct"
```
Additionally, I ran the remote-vllm client-sdk and provider inference
tests as below to ensure they all still passed with this change:
```
VLLM_URL="http://localhost:8000/v1" \
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
LLAMA_STACK_CONFIG=remote-vllm \
python -m pytest -v \
tests/client-sdk/inference/test_text_inference.py \
--inference-model "meta-llama/Llama-3.2-3B-Instruct"
```
```
VLLM_URL="http://localhost:8000/v1" \
python -m pytest -s -v \
llama_stack/providers/tests/inference/test_text_inference.py \
--providers "inference=vllm_remote"
```
[//]: # (## Documentation)
Signed-off-by: Ben Browning <bbrownin@redhat.com>
## context
Now, in llama stack, we only support inference / eval a finetuned
checkpoint with meta-reference as inference provider. This is
sub-optimal since meta-reference is pretty slow.
Our vision is that developer can inference / eval a finetuned checkpoint
produced by post training apis with all the inference providers on the
stack. To achieve this, we'd like to define an unified output checkpoint
format for post training providers. So that, all the inference provider
can respect that format for customized model inference.
By spotting check how
[ollama](https://github.com/ollama/ollama/blob/main/docs/import.md) and
[fireworks](https://docs.fireworks.ai/models/uploading-custom-models) do
inference on a customized model, we defined the output checkpoint format
as /adapter/adapter_config.json and /adapter/adapter_model.safetensors
(as we only support LoRA post training now, we begin from adapter only
checkpoint)
## test
we kick off a post training job and configured checkpoint format as
'huggingface'. Output files

we did a proof of concept with ollama to see if ollama can inference our
finetuned checkpoint
1. create Modelfile like
<img width="799" alt="Screenshot 2025-01-22 at 5 04 18 PM"
src="https://github.com/user-attachments/assets/7fca9ac3-a294-44f8-aab1-83852c600609"
/>
2. create a customized model with `ollama create llama_3_2_finetuned`
and run inference successfully

This is just a proof of concept with ollama cmd line. As next step, we'd
like to wrap loading / inference customized model logic in the inference
provider implementation.
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]
to the llama-stack-client-swift repo - PR:
https://github.com/meta-llama/llama-stack-client-swift/pull/22
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
# What does this PR do?
- Fixed type hinting and missing imports across multiple modules.
- Improved compatibility by using `TYPE_CHECKING` for conditional
imports.
- Updated `pyproject.toml` to enforce stricter linting.
Signed-off-by: Sébastien Han <seb@redhat.com>
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
When there are issues with the tool call function, an exception is
raised but the error message is not informative. This adds a clearer
message to tell users to check their functions.
```
Traceback (most recent call last):
File "/Users/phayes/projects/llama-stack/llama-stack/llama_stack/distribution/server/server.py", line 208, in sse_generator
async for item in event_gen:
File "/Users/phayes/projects/llama-stack/llama-stack/llama_stack/providers/inline/agents/meta_reference/agents.py", line 165, in _create_agent_turn_streaming
async for event in agent.create_and_execute_turn(request):
File "/Users/phayes/projects/llama-stack/llama-stack/llama_stack/providers/inline/agents/meta_reference/agent_instance.py", line 197, in create_and_execute_turn
async for chunk in self.run(
File "/Users/phayes/projects/llama-stack/llama-stack/llama_stack/providers/inline/agents/meta_reference/agent_instance.py", line 389, in run
async for res in self._run(
File "/Users/phayes/projects/llama-stack/llama-stack/llama_stack/providers/inline/agents/meta_reference/agent_instance.py", line 811, in _run
content=tool_result.content,
AttributeError: 'NoneType' object has no attribute 'content'
```
## Test Plan
Ran the same script and exception is raised with clearer error message.
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
Summary:
kotlin SDK expects this format
Test Plan:
python prints the expected format
>>> str(datetime.now().astimezone())
'2025-02-24 22:02:58.729763-08:00'
Summary:
Allows tools to output metadata. This is useful for evaluating tool
outputs, e.g. RAG tool will output document IDs, which can be used to
score recall.
Will need to make a similar change on the client side to support
ClientTool outputting metadata.
Test Plan:
LLAMA_STACK_CONFIG=fireworks pytest -s -v
tests/client-sdk/agents/test_agents.py
# Problem
Our current Agent framework has discrepancies in definition on how we
handle server side and client side tools.
1. Server Tools: a single Turn is returned including `ToolExecutionStep`
in agenst
2. Client Tools: `create_agent_turn` is called in loop with client agent
lib yielding the agent chunk
ad6ffc63df/src/llama_stack_client/lib/agents/agent.py (L186-L211)
This makes it inconsistent to work with server & client tools. It also
complicates the logs to telemetry to get information about agents turn /
history for observability.
#### Principle
The same `turn_id` should be used to represent the steps required to
complete a user message including client tools.
## Solution
1. `AgentTurnResponseEventType.turn_awaiting_input` status to indicate
that the current turn is not completed, and awaiting tool input
2. `continue_agent_turn` endpoint to update agent turn with client's
tool response.
# What does this PR do?
- Skeleton API as example
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
- Just API update, no functionality change
```
llama stack run + client-sdk test
```
<img width="842" alt="image"
src="https://github.com/user-attachments/assets/7ac56b5f-f424-4632-9476-7e0f57555bc3"
/>
[//]: # (## Documentation)