Commit graph

152 commits

Author SHA1 Message Date
Xi Yan
cbb53af701 distro codegen 2025-03-26 12:31:08 -07:00
Xi Yan
bc0cd07008 Merge branch 'main' into eval_api_final 2025-03-26 12:29:45 -07:00
ehhuang
2f38851751
chore: Revert "chore(telemetry): remove service_name entirely" (#1785)
Reverts meta-llama/llama-stack#1755 closes #1781
2025-03-25 14:42:05 -07:00
Rashmi Pawar
1a73f8305b
feat: Add nemo customizer (#1448)
# What does this PR do?

This PR adds support for NVIDIA's NeMo Customizer API to the Llama Stack
post-training module. The integration enables users to fine-tune models
using NVIDIA's cloud-based customization service through a consistent
Llama Stack interface.


[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
Yet to be done

Things pending under this PR:

- [x] Integration of fine-tuned model(new checkpoint) for inference with
nvidia llm distribution
- [x] distribution integration of API
- [x] Add test cases for customizer(In Progress)
- [x] Documentation

```

LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/post_training/test_supervised_fine_tuning.py 

============================================================================================================================================================================ test session starts =============================================================================================================================================================================
platform linux -- Python 3.10.0, pytest-8.3.4, pluggy-1.5.0 -- /home/ubuntu/llama-stack/.venv/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.0', 'Platform': 'Linux-6.8.0-1021-gcp-x86_64-with-glibc2.35', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'nbval': '0.11.0', 'metadata': '3.1.1', 'anyio': '4.8.0', 'html': '4.1.1', 'asyncio': '0.25.3'}}
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: nbval-0.11.0, metadata-3.1.1, anyio-4.8.0, html-4.1.1, asyncio-0.25.3
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 2 items                                                                                                                                                                                                                                                                                                                                                            

tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_post_training_provider_registration[txt=8B] PASSED                                                                                                                                                                                                                                                 [ 50%]
tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_list_training_jobs[txt=8B] PASSED                                                                                                                                                                                                                                                                  [100%]

======================================================================================================================================================================== 2 passed, 1 warning in 0.10s ========================================================================================================================================================================
```
cc: @mattf @dglogo @sumitb

---------

Co-authored-by: Ubuntu <ubuntu@llama-stack-customizer-dev-inst-2tx95fyisatvlic4we8hidx5tfj.us-central1-a.c.brevdevprod.internal>
2025-03-25 11:01:10 -07:00
Xi Yan
7f12ea290f
feat(eval api): (2.3/n) remove scoring / eval impls + benchmarks (#1766)
# What does this PR do?
- Remove `/eval` and `/scoring` impls
- Clean up benchmarks. The benchmarks exists in the `llama-stack-evals`
repo.
- Rest of grading functions will be added in follow up PR. 

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
- CI

[//]: # (## Documentation)
2025-03-23 16:51:17 -07:00
Xi Yan
3f8c7a584a precommit 2025-03-23 16:00:48 -07:00
Xi Yan
a54d757ade merge 2025-03-23 15:48:14 -07:00
ehhuang
b9fbfed216
chore(telemetry): remove service_name entirely (#1755)
# What does this PR do?


## Test Plan

LLAMA_STACK_CONFIG=dev pytest -s -v
tests/integration/agents/test_agents.py::test_custom_tool
--safety-shield meta-llama/Llama-Guard-3-8B --text-model
accounts/fireworks/models/llama-v3p1-8b-instruct

and verify trace in jaeger UI
https://llama-stack.readthedocs.io/en/latest/building_applications/telemetry.html#
2025-03-21 15:11:56 -07:00
ehhuang
34f89bfbd6
feat(telemetry): use zero-width space to avoid clutter (#1754)
# What does this PR do?
Before 
<img width="858" alt="image"
src="https://github.com/user-attachments/assets/6cefb1ae-5603-4818-85ea-a0c337b986bc"
/>

Note the redundant 'llama-stack' in front of every span

## Test Plan
<img width="1171" alt="image"
src="https://github.com/user-attachments/assets/bdc5fd5b-ff1f-4f10-8b40-cff2ea93dd1f"
/>
2025-03-21 12:02:10 -07:00
Yuan Tang
dce9a24a6c
test: Add default vLLM URL in remote-vllm template (#1736)
# What does this PR do?

This is to avoid errors like the following when running inference
integration tests:

```
ERROR tests/integration/inference/test_text_inference.py::test_text_completion_stop_sequence[txt=8B-inference:completion:stop_sequence] - llama_stack.distribution.stack.EnvVarError: Environment variable 'VLLM_URL' not set or empty at providers.inference[0].config.url
```

It's also good to have a default, which is consistent with vLLM API
server.

## Test Plan

Integration tests can run without the error above.

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-03-21 07:31:59 -07:00
Botao Chen
9114bef484
fix: fix experimental-post-training template (#1740)
## What does this PR do?

fix the template to make it compatible with the latest dataset and eval
api change

## test 
run `llama stack run
llama_stack/templates/experimental-post-training/run.yaml` and spin up
the llama stack server successfully
2025-03-20 23:07:19 -07:00
Hardik Shah
127bac6869
fix: Default to port 8321 everywhere (#1734)
As titled, moved all instances of 5001 to 8321
2025-03-20 15:50:41 -07:00
Hardik Shah
581e8ae562
fix: docker run with --pull always to fetch the latest image (#1733)
As titled
2025-03-20 15:35:48 -07:00
Yuan Tang
f5a5c5d459
docs: Add instruction on enabling tool calling for remote vLLM (#1719)
# What does this PR do?

This PR adds a link to tool calling instructions in vLLM. Users have
asked about this many times, e.g.
https://github.com/meta-llama/llama-stack/issues/1648#issuecomment-2740642077

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-03-20 15:18:17 -07:00
Botao Chen
f369871083
feat: [New Eval Benchamark] IfEval (#1708)
# What does this PR do?
In this PR, we added a new eval open benchmark IfEval based on paper
https://arxiv.org/abs/2311.07911 to measure the model capability of
instruction following.


## Test Plan
spin up a llama stack server with open-benchmark template

run `llama-stack-client --endpoint xxx eval run-benchmark
"meta-reference-ifeval" --model-id "meta-llama/Llama-3.3-70B-Instruct"
--output-dir "/home/markchen1015/" --num-examples 20` on client side and
get the eval aggregate results
2025-03-19 16:39:59 -07:00
yyymeta
d117bfe597
feat: [new open benchmark] DocVQA (#1647)
# What does this PR do?
DocVQA asks model to look a a picture, then answer a question given in
text, with a text answer by text information in the picture. these
questions often require understanding of relative positions of texts
within the picture.

original dataset is defined in the "Task1" of
https://www.docvqa.org/datasets


## Test Plan
setup llama server with 

```
llama stack run ./llama_stack/templates/open-benchmark/run.yaml
```


then send traffic:

```
 llama-stack-client eval run-benchmark "meta-reference-docvqa"  --model-id   meta-llama/Llama-3.3-70B-Instruct     --output-dir /tmp/gpqa    --num-examples   200
```
2025-03-19 14:56:14 -07:00
Botao Chen
ab777ef5cd
fix: fix open-benchmark template (#1695)
## What does this PR do?
open-benchmark templated is broken after the datasets api refactor due
to 2 reasons
- provider_id and provider_resource_id are no longer needed 
- the type in run.yaml will be resolved as dict

this PR is to fix the above 2 issues 

## Test 
spin up a llama stack server successfully with llama stack run
`llama_stack/templates/open-benchmark/run.yaml`
2025-03-19 11:27:11 -07:00
Xi Yan
c1d18283d2
feat(eval api): (2.2/n) delete eval / scoring / scoring_fn apis (#1700)
# What does this PR do?
- To make it easier, delete existing `eval/scoring/scoring_function`
apis. There will be a bunch of broken impls here. The sequence is:
1. migrate benchmark graders
2. clean up existing scoring functions

- Add a skeleton evaluation impl to make tests pass. 

## Test Plan
tested in following PRs

[//]: # (## Documentation)
2025-03-19 11:04:23 -07:00
Xi Yan
08c0c5505e
feat(eval api): (2.1/n) fix resolver for benchmark routing table + fix precommit (#1691)
# What does this PR do?
- fixes routing table so that `llama stack run` works
- fixes pre-commit
- one of many fixes to address implementation fix

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
```
llama stack run
```

[//]: # (## Documentation)
2025-03-18 21:09:49 -07:00
Luis Tomas Bolivar
168cbcbb92
fix: Add the option to not verify SSL at remote-vllm provider (#1585)
# What does this PR do?
Add the option to not verify SSL certificates for the remote-vllm
provider. This allows llama stack server to talk to remote LLMs which
have self-signed certificates

Partially addresses  #1545
2025-03-18 09:33:35 -04:00
Xi Yan
5287b437ae
feat(api): (1/n) datasets api clean up (#1573)
## PR Stack
- https://github.com/meta-llama/llama-stack/pull/1573
- https://github.com/meta-llama/llama-stack/pull/1625
- https://github.com/meta-llama/llama-stack/pull/1656
- https://github.com/meta-llama/llama-stack/pull/1657
- https://github.com/meta-llama/llama-stack/pull/1658
- https://github.com/meta-llama/llama-stack/pull/1659
- https://github.com/meta-llama/llama-stack/pull/1660

**Client SDK**
- https://github.com/meta-llama/llama-stack-client-python/pull/203

**CI**
- 1391130488
<img width="1042" alt="image"
src="https://github.com/user-attachments/assets/69636067-376d-436b-9204-896e2dd490ca"
/>
-- the test_rag_agent_with_attachments is flaky and not related to this
PR

## Doc
<img width="789" alt="image"
src="https://github.com/user-attachments/assets/b88390f3-73d6-4483-b09a-a192064e32d9"
/>


## Client Usage
```python
client.datasets.register(
    source={
        "type": "uri",
        "uri": "lsfs://mydata.jsonl",
    },
    schema="jsonl_messages",
    # optional 
    dataset_id="my_first_train_data"
)

# quick prototype debugging
client.datasets.register(
    data_reference={
        "type": "rows",
        "rows": [
                "messages": [...],
        ],
    },
    schema="jsonl_messages",
)
```

## Test Plan
- CI:
1387805545

```
LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/datasets/test_datasets.py
```

```
LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/scoring/test_scoring.py
```

```
pytest -v -s --nbval-lax ./docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb
```
2025-03-17 16:55:45 -07:00
cdgamarose-nv
252a487085
feat: added nvidia as safety provider (#1248)
# What does this PR do?
Adds nvidia as a safety provider by interfacing with the nemo guardrails
microservice.
This enables checking user’s input or the LLM’s output against input and
output guardrails by using the `/v1/guardrails/checks` endpoint of the[
guardrails
API.](https://developer.nvidia.com/docs/nemo-microservices/guardrails/source/guides/checks-guide.html)

## Test Plan
Deploy nemo guardrails service following the documentation:
https://developer.nvidia.com/docs/nemo-microservices/guardrails/source/getting-started/deploy-docker.html

### Standalone:
```bash
(venv) local-cdgamarose@a1u1g-rome-0153:~/llama-stack$ pytest -v -s llama_stack/providers/tests/safety/test_safety.py --providers inference=nvidia,safety=nvidia --safety-shield meta/llama-3.1-8b-instruct

=================================================================================== test session starts ===================================================================================
platform linux -- Python 3.10.12, pytest-8.3.4, pluggy-1.5.0 -- /localhome/local-cdgamarose/llama-stack/venv/bin/python3
cachedir: .pytest_cache
metadata: {'Python': '3.10.12', 'Platform': 'Linux-5.15.0-122-generic-x86_64-with-glibc2.35', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0', 'html': '4.1.1'}}
rootdir: /localhome/local-cdgamarose/llama-stack
configfile: pyproject.toml
plugins: metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0, html-4.1.1
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 2 items

llama_stack/providers/tests/safety/test_safety.py::TestSafety::test_shield_list[--inference=nvidia:safety=nvidia] Initializing NVIDIASafetyAdapter(http://0.0.0.0:7331)...
PASSED
llama_stack/providers/tests/safety/test_safety.py::TestSafety::test_run_shield[--inference=nvidia:safety=nvidia] PASSED

============================================================================== 2 passed, 2 warnings in 4.78s ==============================================================================

```
### Distribution:
```
llama stack run llama_stack/templates/nvidia/run-with-safety.yaml
curl -v -X 'POST' "http://localhost:8321/v1/safety/run-shield" -H 'accept: application/json' -H 'Content-Type: application/json' -d '{"shield_id": "meta/llama-3.1-8b-instruct", "messages":[{"role": "user", "content": "you are stupid"}]}'
{"violation":{"violation_level":"error","user_message":"Sorry I cannot do this.","metadata":{"self check input":{"status":"blocked"}}}}
```

[//]: # (## Documentation)

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-03-17 14:39:23 -07:00
yyymeta
a626b7bce3
feat: [new open benchmark] BFCL_v3 (#1578)
# What does this PR do?
create a new dataset BFCL_v3 from
https://gorilla.cs.berkeley.edu/blogs/13_bfcl_v3_multi_turn.html

overall each question asks the model to perform a task described in
natural language, and additionally a set of available functions and
their schema are given for the model to choose from. the model is
required to write the function call form including function name and
parameters , to achieve the stated purpose. the results are validated
against provided ground truth, to make sure that the generated function
call and the ground truth function call are syntactically and
semantically equivalent, by checking their AST .



## Test Plan

start server by 

```
llama stack run ./llama_stack/templates/ollama/run.yaml
```

then send traffic
```
 llama-stack-client eval run-benchmark "bfcl"  --model-id   meta-llama/Llama-3.2-3B-Instruct    --output-dir /tmp/gpqa    --num-examples   2
```




[//]: # (## Documentation)
2025-03-14 12:50:49 -07:00
Xi Yan
9617468d13
fix: passthrough provider template + fix (#1612)
# What does this PR do?

- Fix issue w/ passthrough provider


[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
llama stack run

[//]: # (## Documentation)
2025-03-13 09:44:26 -07:00
Ashwin Bharambe
d072b5fa0c
test: add unit test to ensure all config types are instantiable (#1601) 2025-03-12 22:29:58 -07:00
Xi Yan
c7139b0b67
fix: fix precommit (#1594)
# What does this PR do?

- fix precommit

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
CI

[//]: # (## Documentation)
2025-03-12 11:59:21 -07:00
Botao Chen
0b0be70605
feat: Add open benchmark template codegen (#1579)
## What does this PR do?

As title, add codegen for open-benchmark template

## test 

checked the new generated run.yaml file and it's identical before and
after the change

Also add small improvement to together template so that missing
TOGETHER_API_KEY won't crash the server which is the consistent user
experience as other remote providers
2025-03-12 11:12:08 -07:00
Dinesh Yeduguru
85501ed875
fix: remove Llama-3.2-1B-Instruct for fireworks (#1558)
# What does this PR do?
remove Llama-3.2-1B-Instruct for fireworks as its no longer appears to
be hosted on website.


## Test Plan

python distro_codegen.py
2025-03-11 11:19:29 -07:00
Botao Chen
e3edca7739
feat: [new open benchmark] Math 500 (#1538)
## What does this PR do?
Created a new math_500 open-benchmark based on OpenAI's [Let's Verify
Step by Step](https://arxiv.org/abs/2305.20050) paper and hugging face's
[HuggingFaceH4/MATH-500](https://huggingface.co/datasets/HuggingFaceH4/MATH-500)
dataset.

The challenge part of this benchmark is to parse the generated and
expected answer and verify if they are same. For the parsing part, we
refer to [Minerva: Solving Quantitative Reasoning Problems with Language
Models](https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/).

To simply the parse logic, as the next step, we plan to also refer to
what [simple-eval](https://github.com/openai/simple-evals) is doing,
using llm as judge to check if the generated answer matches the expected
answer or not


## Test Plan
on sever side, spin up a server with open-benchmark template `llama
stack run llama_stack/templates/open-benchamrk/run.yaml`

on client side, issue an open benchmark eval request `llama-stack-client
--endpoint xxx eval run-benchmark "meta-reference-math-500" --model-id
"meta-llama/Llama-3.3-70B-Instruct" --output-dir "/home/markchen1015/"
--num-examples 20` and get ther aggregated eval results
<img width="238" alt="Screenshot 2025-03-10 at 7 57 04 PM"
src="https://github.com/user-attachments/assets/2c9da042-3b70-470e-a7c4-69f4cc24d1fb"
/>

check the generated answer and the related scoring and they make sense
2025-03-10 20:38:28 -07:00
Ashwin Bharambe
dc84bc755a
fix: revert to using faiss for ollama distro (#1530)
This is unfortunate because `sqlite-vec` seems promising. But its PIP
package is not quite complete. It does not have binary for arm64 (I
think, or maybe it even lacks 64 bit builds?) which results in the arm64
container resulting in
```
File "/usr/local/lib/python3.10/site-packages/sqlite_vec/init.py", line 17, in load
    conn.load_extension(loadable_path())
sqlite3.OperationalError: /usr/local/lib/python3.10/site-packages/sqlite_vec/vec0.so: wrong ELF class: ELFCLASS32
```

To get around I tried to install from source via `uv pip install
sqlite-vec --no-binary=sqlite-vec` however it even lacks a source
distribution which makes that impossible.

## Test Plan

Build the container locally using: 

```bash
LLAMA_STACK_DIR=. llama stack build --template ollama --image-type container
```

Run the container as: 

```
podman run --privileged -it -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
   -v ~/.llama:/root/.llama \
    --env INFERENCE_MODEL=$INFERENCE_MODEL \
    --env OLLAMA_URL=http://host.containers.internal:11434 \
    -v ~/local/llama-stack:/app/llama-stack-source 
    localhost/distribution-ollama:dev --port $LLAMA_STACK_PORT
```

Verify the container starts up correctly. Without this patch, it would
encounter the ELFCLASS32 error.
2025-03-10 16:15:17 -07:00
Reid
0b8cb830b9
docs: update ollama doc url (#1508)
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]

It should changed in this pr
https://github.com/meta-llama/llama-stack/pull/1190/files#diff-53e3f35ced54ee5e57dc8b0d3b04770ed84f2f6434c6f492f42569b3c2810ecd

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Signed-off-by: reidliu <reid201711@gmail.com>
Co-authored-by: reidliu <reid201711@gmail.com>
2025-03-10 13:04:59 -07:00
Botao Chen
ade76e4a69
fix: update the open benchmark eval doc (#1497)
## What does this PR do?
add proper links to the doc

## test
preview the doc 

<img width="1304" alt="Screenshot 2025-03-07 at 3 03 22 PM"
src="https://github.com/user-attachments/assets/0a0e2a3d-2420-4af0-99c3-a4786855fae0"
/>

<img width="1303" alt="Screenshot 2025-03-07 at 3 03 32 PM"
src="https://github.com/user-attachments/assets/e11844e7-ee8a-4a64-8617-abafa02b2868"
/>
2025-03-07 15:05:27 -08:00
Botao Chen
89e449c2cb
fix: Fix open benchmark template (#1496)
## What does this PR do?
Delete the open_benchmark template which was generated by the auto
codegen by accident
2025-03-07 14:49:10 -08:00
Fred Reiss
a8d0cdaf37
feat: updated inline vllm inference provider (#880)
# What does this PR do?

This PR updates the inline vLLM inference provider in several
significant ways:
* Models are now attached at run time to instances of the provider via
the `.../models` API instead of hard-coding the model's full name into
the provider's YAML configuration.
* The provider supports models that are not Meta Llama models. Any model
that vLLM supports can be loaded by passing Huggingface coordinates in
the "provider_model_id" field. Custom fine-tuned versions of Meta Llama
models can be loaded by specifying a path on local disk in the
"provider_model_id".
* To implement full chat completions support, including tool calling and
constrained decoding, the provider now routes the `chat_completions` API
to a captive (i.e. called directly in-process, not via HTTPS) instance
of vLLM's OpenAI-compatible server .
* The `logprobs` parameter and completions API are also working.

## Test Plan

Existing tests in
`llama_stack/providers/tests/inference/test_text_inference.py` have good
coverage of the new functionality. These tests can be invoked as
follows:

```
cd llama-stack && pytest \
    -vvv \
    llama_stack/providers/tests/inference/test_text_inference.py \
    --providers inference=vllm \
    --inference-model meta-llama/Llama-3.2-3B-Instruct
====================================== test session starts ======================================
platform linux -- Python 3.12.8, pytest-8.3.4, pluggy-1.5.0 -- /mnt/datadisk1/freiss/llama/env/bin/python3.12
cachedir: .pytest_cache
metadata: {'Python': '3.12.8', 'Platform': 'Linux-6.8.0-1016-ibm-x86_64-with-glibc2.39', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'anyio': '4.8.0', 'html': '4.1.1', 'metadata': '3.1.1', 'asyncio': '0.25.2'}, 'JAVA_HOME': '/usr/lib/jvm/java-8-openjdk-amd64'}
rootdir: /mnt/datadisk1/freiss/llama/llama-stack
configfile: pyproject.toml
plugins: anyio-4.8.0, html-4.1.1, metadata-3.1.1, asyncio-0.25.2
asyncio: mode=Mode.STRICT, asyncio_default_fixture_loop_scope=None
collected 9 items                                                                               

llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[-vllm] PASSED [ 11%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[-vllm] PASSED [ 22%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_logprobs[-vllm] PASSED [ 33%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[-vllm] PASSED [ 44%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[-vllm] PASSED [ 55%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[-vllm] PASSED [ 66%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[-vllm] PASSED [ 77%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[-vllm] PASSED [ 88%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[-vllm] PASSED [100%]

=========================== 9 passed, 13 warnings in 97.18s (0:01:37) ===========================

```

## Sources


## Before submitting

- [X] Ran pre-commit to handle lint / formatting issues.
- [X] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.

---------

Co-authored-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-03-07 13:38:23 -08:00
ehhuang
1257288361
build: add 'tiktoken' to deps (#1483)
Summary:

Test Plan:
2025-03-07 12:36:02 -08:00
Botao Chen
4dccf916d1
feat: open benchmark template and doc (#1465)
## What does this PR do?
- Provide a distro template to let developer easily run the open
benchmarks llama stack supports on llama and non-llama models.
- Provide doc on how to run open benchmark eval via CLI and open
benchmark contributing guide

[//]: # (If resolving an issue, uncomment and update the line below)
(Closes #1375 )

## Test Plan
open benchmark eval results on llama, gpt, gemini and clause
<img width="771" alt="Screenshot 2025-03-06 at 7 33 05 PM"
src="https://github.com/user-attachments/assets/1bd85456-b9b9-4b37-af76-4ce1d2bac00e"
/>

doc preview
<img width="944" alt="Screenshot 2025-03-06 at 7 33 58 PM"
src="https://github.com/user-attachments/assets/f4e5866d-b395-4c40-aa8b-080edeb5cdb6"
/>
<img width="955" alt="Screenshot 2025-03-06 at 7 34 04 PM"
src="https://github.com/user-attachments/assets/629defb6-d5e4-473c-aa03-308bce386fb4"
/>

<img width="965" alt="Screenshot 2025-03-06 at 7 35 29 PM"
src="https://github.com/user-attachments/assets/c21ff96c-9e8c-4c54-b6b8-25883125f4cf"
/>

<img width="957" alt="Screenshot 2025-03-06 at 7 35 37 PM"
src="https://github.com/user-attachments/assets/47571c90-1381-4e2c-bbed-c4f3a60578d0"
/>
2025-03-07 10:37:55 -08:00
Ashwin Bharambe
abfbaf3c1b
refactor(test): move tools, evals, datasetio, scoring and post training tests (#1401)
All of the tests from `llama_stack/providers/tests/` are now moved to
`tests/integration`.

I converted the `tools`, `scoring` and `datasetio` tests to use API.
However, `eval` and `post_training` proved to be a bit challenging to
leaving those. I think `post_training` should be relatively
straightforward also.

As part of this, I noticed that `wolfram_alpha` tool wasn't added to
some of our commonly used distros so I added it. I am going to remove a
lot of code duplication from distros next so while this looks like a
one-off right now, it will go away and be there uniformly for all
distros.
2025-03-04 14:53:47 -08:00
Ashwin Bharambe
dd0db8038b
refactor(test): unify vector_io tests and make them configurable (#1398)
## Test Plan


`LLAMA_STACK_CONFIG=inference=sentence-transformers,vector_io=sqlite-vec
pytest -s -v test_vector_io.py --embedding-model all-miniLM-L6-V2
--inference-model='' --vision-inference-model=''`

```
test_vector_io.py::test_vector_db_retrieve[txt=:vis=:emb=all-miniLM-L6-V2] PASSED
test_vector_io.py::test_vector_db_register[txt=:vis=:emb=all-miniLM-L6-V2] PASSED
test_vector_io.py::test_insert_chunks[txt=:vis=:emb=all-miniLM-L6-V2-test_case0] PASSED
test_vector_io.py::test_insert_chunks[txt=:vis=:emb=all-miniLM-L6-V2-test_case1] PASSED
test_vector_io.py::test_insert_chunks[txt=:vis=:emb=all-miniLM-L6-V2-test_case2] PASSED
test_vector_io.py::test_insert_chunks[txt=:vis=:emb=all-miniLM-L6-V2-test_case3] PASSED
test_vector_io.py::test_insert_chunks[txt=:vis=:emb=all-miniLM-L6-V2-test_case4] PASSED
```

Same thing with:
- LLAMA_STACK_CONFIG=inference=sentence-transformers,vector_io=faiss
- LLAMA_STACK_CONFIG=fireworks

(Note that ergonomics will soon be improved re: cmd-line options and env
variables)
2025-03-04 13:37:45 -08:00
Reid
cb085d56c6
docs: fix typo (#1390)
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

---------

Signed-off-by: reidliu <reid201711@gmail.com>
Co-authored-by: reidliu <reid201711@gmail.com>
2025-03-04 09:02:55 -08:00
Ashwin Bharambe
46b0a404e8
chore: remove straggler references to llama-models (#1345)
Straggler references cleanup
2025-03-01 14:26:03 -08:00
Ashwin Bharambe
6609d4ada4
feat: allow conditionally enabling providers in run.yaml (#1321)
# What does this PR do?

We want to bundle a bunch of (typically remote) providers in a distro
template and be able to configure them "on the fly" via environment
variables. So far, we have been able to do this with simple env var
replacements. However, sometimes you want to only conditionally enable
providers (because the relevant remote services may not be alive, or
relevant.) This was not possible until now.

To aid this, we add a simple (bash-like) env var replacement
enhancement: `${env.FOO+bar}` evaluates to `bar` if the variable is SET
and evaluates to empty string if it is not. On top of that, we update
our main resolver to ignore any provider whose ID is null.

This allows using the distro like this:

```bash
llama stack run dev --env CHROMADB_URL=http://localhost:6001 --env ENABLE_CHROMADB=1
```

when only Chroma is UP. This disables the other `pgvector` provider in
the run configuration.


## Test Plan

Hard code `chromadb` as the vector io provider inside
`test_vector_io.py` and run:

```bash
LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -s -v tests/client-sdk/vector_io/ --embedding-model all-MiniLM-L6-v2
```
2025-03-01 11:19:14 -08:00
Reid
66cd128ab5
docs: update the downloaded list doc (#1266)
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]

Since released the `--downloaded` option, so update the related
documents.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Signed-off-by: reidliu <reid201711@gmail.com>
Co-authored-by: reidliu <reid201711@gmail.com>
2025-02-28 10:10:12 -08:00
Ashwin Bharambe
4c8a0fa8dc fix: ensure ollama embedding model is registered properly in the template 2025-02-27 22:49:06 -08:00
Reid
c2d2a80b0a
docs: update the output of llama-stack-client models list (#1271)
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Signed-off-by: reidliu <reid201711@gmail.com>
Co-authored-by: reidliu <reid201711@gmail.com>
2025-02-27 16:46:38 -08:00
Ashwin Bharambe
04de2f84e9
fix: register provider model name and HF alias in run.yaml (#1304)
Each model known to the system has two identifiers: 

- the `provider_resource_id` (what the provider calls it) -- e.g.,
`accounts/fireworks/models/llama-v3p1-8b-instruct`
- the `identifier` (`model_id`) under which it is registered and gets
routed to the appropriate provider.

We have so far used the HuggingFace repo alias as the standardized
identifier you can use to refer to the model. So in the above example,
we'd use `meta-llama/Llama-3.1-8B-Instruct` as the name under which it
gets registered. This makes it convenient for users to refer to these
models across providers.

However, we forgot to register the _actual_ provider model ID also. You
should be able to route via `provider_resource_id` also, of course.

This change fixes this (somewhat grave) omission.

*Note*: this change is additive -- more aliases work now compared to
before.

## Test Plan

Run the following for distro=(ollama fireworks together)
```
LLAMA_STACK_CONFIG=$distro \
   pytest -s -v tests/client-sdk/inference/test_text_inference.py \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct --vision-inference-model=""
```
2025-02-27 16:39:23 -08:00
Ashwin Bharambe
928a39d17b
feat(providers): Groq now uses LiteLLM openai-compat (#1303)
Groq has never supported raw completions anyhow. So this makes it easier
to switch it to LiteLLM. All our test suite passes.

I also updated all the openai-compat providers so they work with api
keys passed from headers. `provider_data`

## Test Plan

```bash
LLAMA_STACK_CONFIG=groq \
   pytest -s -v tests/client-sdk/inference/test_text_inference.py \
   --inference-model=groq/llama-3.3-70b-versatile --vision-inference-model=""
```

Also tested (openai, anthropic, gemini) providers. No regressions.
2025-02-27 13:16:50 -08:00
Matthew Farrellee
99b6925ad8
feat: add nemo retriever text embedding models to nvidia inference provider (#1218)
# What does this PR do?

add the NeMo Retriever Embedding models from
https://docs.nvidia.com/nim/nemo-retriever/text-embedding/latest/support-matrix.html
2025-02-26 21:18:34 -08:00
Shrey
30ef1c3680
feat: Add model context protocol tools with ollama provider (#1283)
# What does this PR do?
Model context protocol (MCP) allows for remote tools to be connected
with Agents. The current Ollama provider does not support it. This PR
adds necessary code changes to ensure that the integration between
Ollama backend and MCP works.

This PR is an extension of #816 for Ollama. 

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

1. Run llama-stack server with the command:
```
llama stack build --template ollama --image-type conda
llama stack run ./templates/ollama/run.yaml \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env OLLAMA_URL=http://localhost:11434
```

2. Run the sample client agent with MCP tool:
```
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.types.shared_params.url import URL
from llama_stack_client import LlamaStackClient
from termcolor import cprint

## Start the local MCP server
# git clone https://github.com/modelcontextprotocol/python-sdk
# Follow instructions to get the env ready
# cd examples/servers/simple-tool
# uv run mcp-simple-tool --transport sse --port 8000

# Connect to the llama stack server
base_url="http://localhost:8321"
model_id="meta-llama/Llama-3.2-3B-Instruct"
client = LlamaStackClient(base_url=base_url)


# Register MCP tools
client.toolgroups.register(
    toolgroup_id="mcp::filesystem",
    provider_id="model-context-protocol",
    mcp_endpoint=URL(uri="http://localhost:8000/sse"))

# Define an agent with MCP toolgroup 
agent_config = AgentConfig(
    model=model_id,
    instructions="You are a helpful assistant",
    toolgroups=["mcp::filesystem"],
    input_shields=[],
    output_shields=[],
    enable_session_persistence=False,
)
agent = Agent(client, agent_config)
user_prompts = [
    "Fetch content from https://www.google.com and print the response"
]

# Run a session with the agent
session_id = agent.create_session("test-session")
for prompt in user_prompts:
    cprint(f"User> {prompt}", "green")
    response = agent.create_turn(
        messages=[
            {
                "role": "user",
                "content": prompt,
            }
        ],
        session_id=session_id,
    )
    for log in EventLogger().log(response):
        log.print()
```
# Documentation
The file docs/source/distributions/self_hosted_distro/ollama.md is
updated to indicate the MCP tool runtime availability.

Signed-off-by: Shreyanand <shanand@redhat.com>
2025-02-26 15:38:18 -08:00
Ashwin Bharambe
4cf95475e5 fix: make vision and embedding tests pass with openai, anthropic and gemini
NOTE - Anthropic embeddings do not work due to LiteLLM not supporting
them.
2025-02-26 11:24:01 -08:00
Botao Chen
123fb9eb24
feat: [post training] support save hf safetensor format checkpoint (#845)
## context

Now, in llama stack, we only support inference / eval a finetuned
checkpoint with meta-reference as inference provider. This is
sub-optimal since meta-reference is pretty slow.

Our vision is that developer can inference / eval a finetuned checkpoint
produced by post training apis with all the inference providers on the
stack. To achieve this, we'd like to define an unified output checkpoint
format for post training providers. So that, all the inference provider
can respect that format for customized model inference.

By spotting check how
[ollama](https://github.com/ollama/ollama/blob/main/docs/import.md) and
[fireworks](https://docs.fireworks.ai/models/uploading-custom-models) do
inference on a customized model, we defined the output checkpoint format
as /adapter/adapter_config.json and /adapter/adapter_model.safetensors
(as we only support LoRA post training now, we begin from adapter only
checkpoint)

## test
we kick off a post training job and configured checkpoint format as
'huggingface'. Output files
![Screenshot 2025-02-24 at 11 54
33 PM](https://github.com/user-attachments/assets/fb45a5d7-f288-4d30-82f8-b7a8da2859be)



we did a proof of concept with ollama to see if ollama can inference our
finetuned checkpoint
1. create Modelfile like 

<img width="799" alt="Screenshot 2025-01-22 at 5 04 18 PM"
src="https://github.com/user-attachments/assets/7fca9ac3-a294-44f8-aab1-83852c600609"
/>

2. create a customized model with `ollama create llama_3_2_finetuned`
and run inference successfully

![Screenshot 2025-02-24 at 11 55
17 PM](https://github.com/user-attachments/assets/1abe7c52-c6a7-491a-b07c-b7a8e3fd1ddd)


This is just a proof of concept with ollama cmd line. As next step, we'd
like to wrap loading / inference customized model logic in the inference
provider implementation.
2025-02-25 23:29:08 -08:00