Commit graph

209 commits

Author SHA1 Message Date
Ashwin Bharambe
182608d4bf better test naming 2025-02-21 14:27:08 -08:00
Ashwin Bharambe
ab54b8cd58
feat(providers): support non-llama models for inference providers (#1200)
This PR begins the process of supporting non-llama models within Llama
Stack. We start simple by adding support for this functionality within a
few existing providers: fireworks, together and ollama.

## Test Plan

```bash
LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/inference/test_text_inference.py \
  --inference-model accounts/fireworks/models/phi-3-vision-128k-instruct
```

^ this passes most of the tests but as expected fails the tool calling
related tests since they are very specific to Llama models

```
inference/test_text_inference.py::test_text_completion_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct] PASSED
inference/test_text_inference.py::test_completion_log_probs_non_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct] PASSED
inference/test_text_inference.py::test_completion_log_probs_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct] PASSED
inference/test_text_inference.py::test_text_completion_structured_output[accounts/fireworks/models/phi-3-vision-128k-instruct-completion-01] PASSED
inference/test_text_inference.py::test_text_chat_completion_non_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct-Which planet do humans live on?-Earth] PASSED
inference/test_text_inference.py::test_text_chat_completion_non_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct-Which planet has rings around it with a name starting w
ith letter S?-Saturn] PASSED
inference/test_text_inference.py::test_text_chat_completion_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct-What's the name of the Sun in latin?-Sol] PASSED
inference/test_text_inference.py::test_text_chat_completion_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct-What is the name of the US captial?-Washington] PASSED
inference/test_text_inference.py::test_text_chat_completion_with_tool_calling_and_non_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct] FAILED
inference/test_text_inference.py::test_text_chat_completion_with_tool_calling_and_streaming[accounts/fireworks/models/phi-3-vision-128k-instruct] FAILED
inference/test_text_inference.py::test_text_chat_completion_with_tool_choice_required[accounts/fireworks/models/phi-3-vision-128k-instruct] FAILED
inference/test_text_inference.py::test_text_chat_completion_with_tool_choice_none[accounts/fireworks/models/phi-3-vision-128k-instruct] PASSED
inference/test_text_inference.py::test_text_chat_completion_structured_output[accounts/fireworks/models/phi-3-vision-128k-instruct] ERROR
inference/test_text_inference.py::test_text_chat_completion_tool_calling_tools_not_in_request[accounts/fireworks/models/phi-3-vision-128k-instruct-True] PASSED
inference/test_text_inference.py::test_text_chat_completion_tool_calling_tools_not_in_request[accounts/fireworks/models/phi-3-vision-128k-instruct-False] PASSED
```
2025-02-21 13:21:28 -08:00
ehhuang
25fddccfd8
feat: tool outputs metadata (#1155)
Summary:

Allows tools to output metadata. This is useful for evaluating tool
outputs, e.g. RAG tool will output document IDs, which can be used to
score recall.

Will need to make a similar change on the client side to support
ClientTool outputting metadata.

Test Plan:

LLAMA_STACK_CONFIG=fireworks pytest -s -v
tests/client-sdk/agents/test_agents.py
2025-02-21 13:15:31 -08:00
Xi Yan
0fe071764f
feat(1/n): api: unify agents for handling server & client tools (#1178)
# Problem

Our current Agent framework has discrepancies in definition on how we
handle server side and client side tools.

1. Server Tools: a single Turn is returned including `ToolExecutionStep`
in agenst
2. Client Tools: `create_agent_turn` is called in loop with client agent
lib yielding the agent chunk

ad6ffc63df/src/llama_stack_client/lib/agents/agent.py (L186-L211)

This makes it inconsistent to work with server & client tools. It also
complicates the logs to telemetry to get information about agents turn /
history for observability.

#### Principle
The same `turn_id` should be used to represent the steps required to
complete a user message including client tools.

## Solution

1. `AgentTurnResponseEventType.turn_awaiting_input` status to indicate
that the current turn is not completed, and awaiting tool input
2. `continue_agent_turn` endpoint to update agent turn with client's
tool response.


# What does this PR do?
- Skeleton API as example

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

- Just API update, no functionality change
```
llama stack run + client-sdk test
```

<img width="842" alt="image"
src="https://github.com/user-attachments/assets/7ac56b5f-f424-4632-9476-7e0f57555bc3"
/>


[//]: # (## Documentation)
2025-02-21 11:48:27 -08:00
Matthew Farrellee
46da187c07
fix: remove list of list tests, no longer relevant after #1161 (#1205)
# What does this PR do?

#1161 updated the embedding signature making the nested list tests
irrelevant
2025-02-21 08:07:35 -08:00
Matthew Farrellee
3099c5243f
fix: update URL import, URL -> ImageContentItemImageURL (#1204)
# What does this PR do?

fixes test to use new name for URL import

## Test Plan

`LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v
tests/client-sdk/inference/test_embedding.py --embedding-model
baai/bge-m3`
2025-02-21 08:02:21 -08:00
Ashwin Bharambe
34226d6c93 Another test_case related breakage fix 2025-02-20 23:10:33 -08:00
Ashwin Bharambe
36b762303c Fix client-sdk inference text -- spurious parameterization of test_case 2025-02-20 22:46:17 -08:00
Matthew Farrellee
832c535aaf
feat(providers): add NVIDIA Inference embedding provider and tests (#935)
# What does this PR do?

add /v1/inference/embeddings implementation to NVIDIA provider

**open topics** -
- *asymmetric models*. NeMo Retriever includes asymmetric models, which
are models that embed differently depending on if the input is destined
for storage or lookup against storage. the /v1/inference/embeddings api
does not allow the user to indicate the type of embedding to perform.
see https://github.com/meta-llama/llama-stack/issues/934
- *truncation*. embedding models typically have a limited context
window, e.g. 1024 tokens is common though newer models have 8k windows.
when the input is larger than this window the endpoint cannot perform
its designed function. two options: 0. return an error so the user can
reduce the input size and retry; 1. perform truncation for the user and
proceed (common strategies are left or right truncation). many users
encounter context window size limits and will struggle to write reliable
programs. this struggle is especially acute without access to the
model's tokenizer. the /v1/inference/embeddings api does not allow the
user to delegate truncation policy. see
https://github.com/meta-llama/llama-stack/issues/933
- *dimensions*. "Matryoshka" embedding models are available. they allow
users to control the number of embedding dimensions the model produces.
this is a critical feature for managing storage constraints. embeddings
of 1024 dimensions what achieve 95% recall for an application may not be
worth the storage cost if a 512 dimensions can achieve 93% recall.
controlling embedding dimensions allows applications to determine their
recall and storage tradeoffs. the /v1/inference/embeddings api does not
allow the user to control the output dimensions. see
https://github.com/meta-llama/llama-stack/issues/932

## Test Plan

- `llama stack run llama_stack/templates/nvidia/run.yaml`
- `LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v
tests/client-sdk/inference/test_embedding.py --embedding-model
baai/bge-m3`


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [x] Wrote necessary unit or integration tests.

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-02-20 16:59:48 -08:00
LESSuseLESS
2cbe9395b0
feat: D69478008 [llama-stack] turning tests into data-driven (#1180)
# What does this PR do?

We have several places running tests for different purposes.
- oss llama stack
  - provider tests
  - e2e tests
- provider llama stack
  - unit tests
  - e2e tests

It would be nice if they can *share the same set of test data*, so we
maintain the consistency between spec and implementation. This is what
this diff is about, isolating test data from test coding, so that we can
reuse the same data at different places by writing different test
coding.

## Test Plan

== Set up Ollama local server  
==  Run a provider test
conda activate stack

OLLAMA_URL="http://localhost:8321" \
pytest -v -s -k "ollama" --inference-model="llama3.2:3b-instruct-fp16" \

llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output
// test_structured_output should also work

== Run an e2e test
conda activate sherpa
with-proxy pip install llama-stack
export INFERENCE_MODEL=llama3.2:3b-instruct-fp16
export LLAMA_STACK_PORT=8322
with-proxy llama stack build --template ollama
with-proxy llama stack run --env OLLAMA_URL=http://localhost:8321 ollama
  - Run test client,
LLAMA_STACK_PORT=8322 LLAMA_STACK_BASE_URL="http://localhost:8322" \
pytest -v -s --inference-model="llama3.2:3b-instruct-fp16" \

tests/client-sdk/inference/test_text_inference.py::test_text_completion_structured_output
// test_text_chat_completion_structured_output should also work

## Notes

- This PR was automatically generated by oss_sync
- Please refer to D69478008 for more details.
2025-02-20 14:13:06 -08:00
Sixian Yi
531940aea9
script for running client sdk tests (#895)
# What does this PR do?
Create a script for running all client-sdk tests on Async Library
client, with the option to generate report


## Test Plan

```
python llama_stack/scripts/run_client_sdk_tests.py --templates together fireworks --report
```



## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-02-19 22:38:06 -08:00
Yuan Tang
a66b4c4c81
test: Enable test_text_chat_completion_with_tool_choice_required for remote::vllm (#1148) 2025-02-18 23:52:15 -05:00
ehhuang
8de7cf103b
feat: support tool_choice = {required, none, <function>} (#1059)
Summary:

titled


Test Plan:

added tests and

LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/
--safety-shield meta-llama/Llama-Guard-3-8B
2025-02-18 23:25:15 -05:00
ehhuang
ab2b46e528
feat: log start, complete time to Agent steps (#1116) 2025-02-14 17:48:06 -08:00
Hardik Shah
ab210ec59e
Update README.md 2025-02-14 15:45:08 -08:00
Ashwin Bharambe
314ee09ae3
chore: move all Llama Stack types from llama-models to llama-stack (#1098)
llama-models should have extremely minimal cruft. Its sole purpose
should be didactic -- show the simplest implementation of the llama
models and document the prompt formats, etc.

This PR is the complement to
https://github.com/meta-llama/llama-models/pull/279

## Test Plan

Ensure all `llama` CLI `model` sub-commands work:

```bash
llama model list
llama model download --model-id ...
llama model prompt-format -m ...
```

Ran tests:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/
LLAMA_STACK_CONFIG=fireworks pytest -s -v vector_io/
LLAMA_STACK_CONFIG=fireworks pytest -s -v agents/
```

Create a fresh venv `uv venv && source .venv/bin/activate` and run
`llama stack build --template fireworks --image-type venv` followed by
`llama stack run together --image-type venv` <-- the server runs

Also checked that the OpenAPI generator can run and there is no change
in the generated files as a result.

```bash
cd docs/openapi_generator
sh run_openapi_generator.sh
```
2025-02-14 09:10:59 -08:00
Xi Yan
b27c41fe39
fix: disable sqlite-vec test (#1090)
# What does this PR do?
- sqlite_vec not added to all template yet, disable test for now to
unblock release cut

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
<img width="846" alt="image"
src="https://github.com/user-attachments/assets/fa896497-f37c-4cdf-bc62-21893afbd392"
/>

[//]: # (## Documentation)
2025-02-13 18:40:16 -08:00
ehhuang
225dd38e5c
test: add test for Agent.create_turn non-streaming response (#1078)
Summary:

This tests the fix to the SDK in
https://github.com/meta-llama/llama-stack-client-python/pull/141

Test Plan:

LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/
--safety-shield meta-llama/Llama-Guard-3-8B
2025-02-13 16:17:50 -08:00
Yuan Tang
efdd60014d
test: Enable logprobs top_k tests for remote::vllm (#1080)
top_k supported was added in
https://github.com/meta-llama/llama-stack/pull/1074. The tests should be
enabled as well.

Verified that tests pass for remote::vllm:

```
LLAMA_STACK_BASE_URL=http://localhost:5003 pytest -v tests/client-sdk/inference/test_text_inference.py -k " test_completion_log_probs_non_streaming or test_completion_log_probs_streaming"
================================================================ test session starts ================================================================
platform linux -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /home/yutang/.conda/envs/distribution-myenv/bin/python3.10
cachedir: .pytest_cache
rootdir: /home/yutang/repos/llama-stack
configfile: pyproject.toml
plugins: anyio-4.8.0
collected 14 items / 12 deselected / 2 selected                                                                                                     

tests/client-sdk/inference/test_text_inference.py::test_completion_log_probs_non_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED           [ 50%]
tests/client-sdk/inference/test_text_inference.py::test_completion_log_probs_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED               [100%]

=================================================== 2 passed, 12 deselected, 1 warning in 10.03s ====================================================
```

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-13 13:44:57 -05:00
Sébastien Han
e4a1579e63
build: format codebase imports using ruff linter (#1028)
# What does this PR do?

- Configured ruff linter to automatically fix import sorting issues.
- Set --exit-non-zero-on-fix to ensure non-zero exit code when fixes are
applied.
- Enabled the 'I' selection to focus on import-related linting rules.
- Ran the linter, and formatted all codebase imports accordingly.
- Removed the black dep from the "dev" group since we use ruff

Signed-off-by: Sébastien Han <seb@redhat.com>

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-02-13 10:06:21 -08:00
Francisco Arceo
119fe8742a
feat: Adding sqlite-vec as a vectordb (#1040)
# What does this PR do?
This PR adds `sqlite_vec` as an additional inline vectordb.

Tested with `ollama` by adding the `vector_io` object in
`./llama_stack/templates/ollama/run.yaml` :

```yaml
  vector_io:
  - provider_id: sqlite_vec
    provider_type: inline::sqlite_vec
    config:
      kvstore:
        type: sqlite
        namespace: null
        db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/sqlite_vec.db
      db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/sqlite_vec.db
```
I also updated the `./tests/client-sdk/vector_io/test_vector_io.py` test
file with:
```python
INLINE_VECTOR_DB_PROVIDERS = ["faiss", "sqlite_vec"]
```
And parameterized the relevant tests. 

[//]: # (If resolving an issue, uncomment and update the line below)
# Closes 
https://github.com/meta-llama/llama-stack/issues/1005

## Test Plan
I ran the tests with:
```bash
INFERENCE_MODEL=llama3.2:3b-instruct-fp16 LLAMA_STACK_CONFIG=ollama pytest -s -v tests/client-sdk/vector_io/test_vector_io.py
```
Which outputs:
```python
...
PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_retrieve[all-MiniLM-L6-v2-sqlite_vec] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_list PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_register[all-MiniLM-L6-v2-faiss] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_register[all-MiniLM-L6-v2-sqlite_vec] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_unregister[faiss] PASSED
tests/client-sdk/vector_io/test_vector_io.py::test_vector_db_unregister[sqlite_vec] PASSED
```

In addition, I ran the `rag_with_vector_db.py`
[example](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/rag_with_vector_db.py)
using the script below with `uv run rag_example.py`.
<details>
<summary>CLICK TO SHOW SCRIPT 👋  </summary>

```python
#!/usr/bin/env python3
import os
import uuid
from termcolor import cprint

# Set environment variables
os.environ['INFERENCE_MODEL'] = 'llama3.2:3b-instruct-fp16'
os.environ['LLAMA_STACK_CONFIG'] = 'ollama'

# Import libraries after setting environment variables
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.types import Document


def main():
    # Initialize the client
    client = LlamaStackAsLibraryClient("ollama")
    vector_db_id = f"test-vector-db-{uuid.uuid4().hex}"

    _ = client.initialize()

    model_id = 'llama3.2:3b-instruct-fp16'

    # Define the list of document URLs and create Document objects
    urls = [
        "chat.rst",
        "llama3.rst",
        "memory_optimizations.rst",
        "lora_finetune.rst",
    ]
    documents = [
        Document(
            document_id=f"num-{i}",
            content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
            mime_type="text/plain",
            metadata={},
        )
        for i, url in enumerate(urls)
    ]
    # (Optional) Use the documents as needed with your client here

    client.vector_dbs.register(
        provider_id='sqlite_vec',
        vector_db_id=vector_db_id,
        embedding_model="all-MiniLM-L6-v2",
        embedding_dimension=384,
    )

    client.tool_runtime.rag_tool.insert(
        documents=documents,
        vector_db_id=vector_db_id,
        chunk_size_in_tokens=512,
    )
    # Create agent configuration
    agent_config = AgentConfig(
        model=model_id,
        instructions="You are a helpful assistant",
        enable_session_persistence=False,
        toolgroups=[
            {
                "name": "builtin::rag",
                "args": {
                    "vector_db_ids": [vector_db_id],
                }
            }
        ],
    )

    # Instantiate the Agent
    agent = Agent(client, agent_config)

    # List of user prompts
    user_prompts = [
        "What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.",
        "Was anything related to 'Llama3' discussed, if so what?",
        "Tell me how to use LoRA",
        "What about Quantization?",
    ]

    # Create a session for the agent
    session_id = agent.create_session("test-session")

    # Process each prompt and display the output
    for prompt in user_prompts:
        cprint(f"User> {prompt}", "green")
        response = agent.create_turn(
            messages=[
                {
                    "role": "user",
                    "content": prompt,
                }
            ],
            session_id=session_id,
        )
        # Log and print events from the response
        for log in EventLogger().log(response):
            log.print()


if __name__ == "__main__":
    main()
```
</details>

Which outputs a large summary of RAG generation.

# Documentation

Will handle documentation updates in follow-up PR.

# (- [ ] Added a Changelog entry if the change is significant)

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-02-12 10:50:03 -08:00
Xi Yan
66d7e15c93
perf: ensure ToolCall in ChatCompletionResponse is subset of ChatCompletionRequest.tools (#1041)
# What does this PR do?

**Problem**
- Using script:
https://gist.github.com/thoraxe/6163b2145ce7b1c24c6026b64cf90085

- This hits an issue on server with `code_interpreter` not found, as we
do not pass "builtin::code_interpreter" in AgentConfig's `toolgroups`.

This is a general issue where model always tries to output
`code_interpreter` in `ToolCall` even when we do not have
`code_interpreter` available for execution.

**Reproduce Deeper Problem in chat-completion**
- Use script:
https://gist.github.com/yanxi0830/163a9ad7b5db10556043fbfc7ecd7603

1. We currently always populate `code_interpreter` in `ToolCall` in
ChatCompletionResponse if the model's response begins with
`<|python_tag|>`. See
c5f5958498/models/llama3/api/chat_format.py (L200-L213)

<img width="913" alt="image"
src="https://github.com/user-attachments/assets/328d313d-0a0b-495c-8715-61cca9ccc4a6"
/>

2. This happens even if we do not pass the `code_interpreter` as a
`tools` in ChatCompletionRequest.

**This PR**

Explicitly make sure that the tools returned in
`ChatCompletionResponse.tool_calls` is always a tool requested by
`ChatCompletionRequest.tools`.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

**Before**
<img width="913" alt="image"
src="https://github.com/user-attachments/assets/328d313d-0a0b-495c-8715-61cca9ccc4a6"
/>
<img width="997" alt="image"
src="https://github.com/user-attachments/assets/d3e82b62-b142-4939-954c-62843bec7110"
/>


**After**
<img width="856" alt="image"
src="https://github.com/user-attachments/assets/2c70ce55-c8d0-45ea-b10f-f70adc50d3d9"
/>
<img width="1000" alt="image"
src="https://github.com/user-attachments/assets/b5e81826-c35b-4052-bf81-7afff93ce2ef"
/>



**Unit Test**
```
LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_tool_calling_tools_not_in_request --inference-model "meta-llama/Llama-3.3-70B-Instruct"
```

```
LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v tests/client-sdk/agents/
```
<img width="1002" alt="image"
src="https://github.com/user-attachments/assets/04808517-eded-4122-97f5-7e5142de9779"
/>



**Streaming**
- Chat Completion
<img width="902" alt="image"
src="https://github.com/user-attachments/assets/f477bc86-bd38-4729-b49e-a0a6ed3f835a"
/>

- Agent
<img width="916" alt="image"
src="https://github.com/user-attachments/assets/f4cc3417-23cd-46b1-953d-3a2271e79bbb"
/>


[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
2025-02-11 18:31:35 -08:00
ehhuang
96c88397da
fix: agent config validation (#1053)
Summary:

Fixes AgentConfig init bug introduced with ToolConfig.

Namely, the below doesn't work
```
    agent_config = AgentConfig(
        **common_params,
        tool_config=ToolConfig(
            tool_choice="required",
        ),
    )
```
bvecause tool_choice was defaulted to 'auto' leading to validation check
failing.

Test Plan:

added unittests

LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/
--safety-shield meta-llama/Llama-Guard-3-8B
2025-02-11 14:48:42 -08:00
Sébastien Han
b34c1dd8ad
test: replace blocked image URLs with GitHub-hosted (#1025)
# What does this PR do?

The previous image URLs were sometimes blocked by Cloudflare, causing
test failures for some users. This update replaces them with a
GitHub-hosted image (`dog.png`) from the `llama-stack` repository,
ensuring more reliable access during testing.

Signed-off-by: Sébastien Han <seb@redhat.com>

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

```
$ ollama run llama3.2-vision:latest --keep-alive 2m &

$ uv run pytest -v -s -k "ollama" --inference-model=llama3.2-vision:latest llama_stack/providers/tests/inference/test_vision_inference.py
/Users/leseb/Documents/AI/llama-stack/.venv/lib/python3.13/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"

  warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
============================================ test session starts =============================================
platform darwin -- Python 3.13.1, pytest-8.3.4, pluggy-1.5.0 -- /Users/leseb/Documents/AI/llama-stack/.venv/bin/python3
cachedir: .pytest_cache
metadata: {'Python': '3.13.1', 'Platform': 'macOS-15.3-arm64-arm-64bit-Mach-O', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0', 'nbval': '0.11.0'}}
rootdir: /Users/leseb/Documents/AI/llama-stack
configfile: pyproject.toml
plugins: html-4.1.1, metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0, nbval-0.11.0
asyncio: mode=Mode.STRICT, asyncio_default_fixture_loop_scope=None
collected 39 items / 36 deselected / 3 selected                                                              

llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_non_streaming[-ollama-image0-expected_strings0] PASSED
llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_non_streaming[-ollama-image1-expected_strings1] 
PASSED
llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_streaming[-ollama] PASSED

========================== 3 passed, 36 deselected, 2 warnings in 62.23s (0:01:02) ==========================
```

[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-02-10 22:38:11 -05:00
Yuan Tang
b981b49bfa
test: Use JSON tool prompt format for remote::vllm provider (#1019)
# What does this PR do?

This PR removes the warnings when running tests for `remote::vllm`
provider:
```
Detected the chat template content format to be 'openai'. You can set `--chat-template-content-format` to override this.
```

## Test Plan

All tests passed without the warning messages shown above.

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-08 20:42:57 -08:00
Yuan Tang
413099ef6a
test: Make text-based chat completion tests run 10x faster (#1016)
# What does this PR do?

This significantly shortens the test time (about 10x faster) since most
of the time is spent on outputing the tokens "there are several planets
in our solar system that have...". We want to have an answer quicker,
especially when testing even larger models.

## Test Plan

```
LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/inference/test_text_inference.py -k "test_text_chat_completion_non_streaming or test_text_chat_completion_streaming"
================================================================== test session starts ===================================================================
platform linux -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /home/yutang/.conda/envs/myenv/bin/python3.10
cachedir: .pytest_cache
rootdir: /home/yutang/repos/llama-stack
configfile: pyproject.toml
plugins: anyio-4.7.0
collected 12 items / 8 deselected / 4 selected                                                                                                           

tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct-Which planet do humans live on?-Earth] PASSED [ 25%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct-Which planet has rings around it with a name starting with letter S?-Saturn] PASSED [ 50%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_streaming[meta-llama/Llama-3.1-8B-Instruct-What's the name of the Sun in latin?-Sol] PASSED [ 75%]
tests/client-sdk/inference/test_text_inference.py::test_text_chat_completion_streaming[meta-llama/Llama-3.1-8B-Instruct-What is the name of the US captial?-Washington] PASSED [100%]


```

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-08 11:49:46 -08:00
Yuan Tang
c97e05f75e
test: Split inference tests to text and vision (#1008)
# What does this PR do?

This PR splits the inference tests into text and vision to make testing
on vLLM provider easier as mentioned in
https://github.com/meta-llama/llama-stack/pull/951 since serving
multiple models (e.g. Llama-3.2-11B-Vision-Instruct and
Llama-3.1-8B-Instruct) on a single port using the OpenAI API is [not
supported yet](https://docs.vllm.ai/en/v0.5.5/serving/faq.html) so it's
a bit tricky to test both at the same time.

## Test Plan

All previously passing tests related to text still pass:
`LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v
tests/client-sdk/inference/test_text_inference.py`

All vision tests passed via `LLAMA_STACK_BASE_URL=http://localhost:5002
pytest -v tests/client-sdk/inference/test_vision_inference.py`.

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-07 09:35:49 -08:00
ehhuang
a9950ce806
test: remove flaky agent test (#1006)
Summary:

Test Plan:
2025-02-07 09:35:38 -08:00
ehhuang
d0d568c5ba
test: fix flaky agent test (#1002)
Summary:

Test Plan:

LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/
--safety-shield meta-llama/Llama-Guard-3-8

all tests passed
2025-02-06 20:19:38 -08:00
Hardik Shah
28a0fe57cc
fix: Update rag examples to use fresh faiss index every time (#998)
# What does this PR do?
In several examples we use the same faiss index , which means running it
multiple times fills up the index with duplicates which eventually
degrades the model performance on RAG as multiple copies of the same
irrelevant chunks might be picked up several times.

Fix is to ensure we create a new index each time. 

Resolves issue in this discussion -
https://github.com/meta-llama/llama-stack/discussions/995

## Test Plan
Re-ran the getting started guide multiple times to see the same output

Co-authored-by: Hardik Shah <hjshah@fb.com>
2025-02-06 16:12:29 -08:00
Xi Yan
06e5af1435 update test 2025-02-06 16:11:20 -08:00
ehhuang
3922999118
sys_prompt support in Agent (#938)
# What does this PR do?

The current default system prompt for llama3.2 tends to overindex on
tool calling and doesn't work well when the prompt does not require tool
calling.

This PR adds an option to override the default system prompt, and
organizes tool-related configs into a new config object.

- [ ] Addresses issue (#issue)


## Test Plan


LLAMA_STACK_CONFIG=together pytest
\-\-inference\-model=meta\-llama/Llama\-3\.3\-70B\-Instruct -s -v
tests/client-sdk/agents/test_agents.py::test_override_system_message_behavior


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-02-05 21:11:32 -08:00
Ihar Hrachyshka
5c8e35a9e2
docs, tests: replace datasets.rst with memory_optimizations.rst (#968)
datasets.rst was removed from torchtune repo.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>

# What does this PR do?

Replace a missing 404 document with another one that exists. (Removed it
from
the list when memory_optimizations.rst was already pulled.)


## Test Plan

Please describe:
 - tests you ran to verify your changes with result summaries.
 - provide instructions so it can be reproduced.


## Sources

Please link relevant resources if necessary.


## Before submitting

- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-02-05 11:25:56 -05:00
Yuan Tang
34ab7a3b6c
Fix precommit check after moving to ruff (#927)
Lint check in main branch is failing. This fixes the lint check after we
moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We
need to move to a `ruff.toml` file as well as fixing and ignoring some
additional checks.

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-02 06:46:45 -08:00
Ashwin Bharambe
75abe48cd0 completions can randomly blurt out something else 2025-02-01 16:01:21 -08:00
Ashwin Bharambe
1ac0d8306b Remove test parameterization for safety tests, too much noise 2025-02-01 08:38:44 -08:00
Ashwin Bharambe
f0ba367877 Update client-sdk test config option handling 2025-01-31 15:30:07 -08:00
Hardik Shah
589a6911ba
fix rag tests (#918)
make more deterministic
2025-01-31 15:29:29 -08:00
Matthew Farrellee
2f11c7c203
add test for user message w/ image.data content (#906)
# What does this PR do?

a test exists for image.url content, but not image.data content. this
adds the former.


## Test Plan

`LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v
tests/client-sdk/inference/test_inference.py`


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [x] Wrote necessary unit or integration tests.
2025-01-30 17:35:27 -08:00
Hardik Shah
97eb3eecea
Fix Agents to support code and rag simultaneously (#908)
# What does this PR do?

Fixes a bug where agents were not working when both rag and
code-interpreter were added as tools.


## Test Plan

Added a new client_sdk test which tests for this scenario 
```
LLAMA_STACK_CONFIG=together pytest -s -v  tests/client-sdk -k 'test_rag_and_code_agent'
```

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
2025-01-30 17:09:34 -08:00
Sixian Yi
836f47a82d
log probs - mark pytests as xfail for unsupported providers + add support for together (#883)
# What does this PR do?

1) As per @mattf's suggestion, we want to mark the pytest as xfail for
providers that do not support the functionality. In this diff, we xfail
the logProbs inference tests for providers who does not support log
probs.
( log probs is only supported by together, fireworks and vllm)

2) Added logProbs support for together according to their developer
[doc](https://docs.together.ai/docs/logprobs).

## Test Plan
1) Together & Fireworks
```
export LLAMA_STACK_CONFIG=/Users/sxyi/llama-stack/llama_stack/templates/together/run.yaml  
/opt/miniconda3/envs/stack/bin/pytest -s -v /Users/sxyi/llama-stack/tests/client-sdk/inference/test_inference.py
```
```
tests/client-sdk/inference/test_inference.py::test_text_completion_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_completion_log_probs_non_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_completion_log_probs_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_text_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct-What are the names of planets in our solar system?-Earth] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct-What are the names of the planets that have rings around them?-Saturn] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_streaming[meta-llama/Llama-3.1-8B-Instruct-What's the name of the Sun in latin?-Sol] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_streaming[meta-llama/Llama-3.1-8B-Instruct-What is the name of the US captial?-Washington] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_with_tool_calling_and_non_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_with_tool_calling_and_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_image_chat_completion_non_streaming[meta-llama/Llama-3.2-11B-Vision-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_image_chat_completion_streaming[meta-llama/Llama-3.2-11B-Vision-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_image_chat_completion_base64_url[meta-llama/Llama-3.2-11B-Vision-Instruct] PASSED

========================================================================================== 15 passed, 2 warnings in 19.46s ===========================================================================================
```

```
export LLAMA_STACK_CONFIG=/Users/sxyi/llama-stack/llama_stack/templates/fireworks/run.yaml   
/opt/miniconda3/envs/stack/bin/pytest -s -v /Users/sxyi/llama-stack/tests/client-sdk/inference/test_inference.py
```
All tests passed 

2) Ollama - LogProbs tests are marked as xfailed. 
```
tests/client-sdk/inference/test_inference.py::test_completion_log_probs_non_streaming[meta-llama/Llama-3.1-8B-Instruct] XFAIL (remote::ollama doesn't support log probs yet)
tests/client-sdk/inference/test_inference.py::test_completion_log_probs_streaming[meta-llama/Llama-3.1-8B-Instruct] XFAIL (remote::ollama doesn't support log probs yet)
```
## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-29 23:41:25 -08:00
Sixian Yi
ba453c3487
Report generation minor fixes (#884)
# What does this PR do?

fixed report generation:
1) do not initialize a new client in report.py - instead get it from
pytest fixture
2) Add "provider" for "safety" and "agents" section
3) add logprobs functionality in "inference" section


## Test Plan

See the regenerated report 



## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-28 04:58:12 -08:00
Hardik Shah
632e60439a
Fix report generation for url endpoints (#876)
Earlier, we would have some unknown magic to identify the path for
remote endpoints when testing client_sdk/tests.
Removed that and now you have to explicitly pass a path
2025-01-24 13:15:44 -08:00
Dinesh Yeduguru
a78f1fc70d
make default tool prompt format none in agent config (#863)
# What does this PR do?

Previously the tests hard coded the tool prompt format to be json which
will cause it to fail when using 3.2/3.3 family of models. This change
make the default to be none for the agent config and just remove the
specification in the tests.


## Test Plan
LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v
tests/client-sdk/agents/test_agents.py
2025-01-23 14:44:59 -08:00
Sixian Yi
82a28f3a24
update doc for client-sdk testing (#849)
As title


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-23 00:17:16 -08:00
Ashwin Bharambe
3d14a3d46f Kill colons 2025-01-22 22:59:30 -08:00
Ashwin Bharambe
35c71d5bbe
Update OpenAPI generator to output discriminator (#848)
oneOf should have discriminators so Stainless can generate better code

## Test Plan

Going to generate the SDK now and check.
2025-01-22 22:15:23 -08:00
Ashwin Bharambe
f3d8864c36 Rename builtin::memory -> builtin::rag 2025-01-22 20:22:51 -08:00
Sixian Yi
597869a2aa
add distro report (#847)
# What does this PR do?

Generate distro reports to cover inference, agents, and vector_io. 


## Test Plan

Report generated through `/opt/miniconda3/envs/stack/bin/pytest -s -v
tests/client-sdk/ --report`


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-22 19:20:49 -08:00
Ashwin Bharambe
23f1980f9c Fix meta-reference GPU implementation for inference 2025-01-22 18:31:59 -08:00