Commit graph

334 commits

Author SHA1 Message Date
Francisco Arceo
f328436831
feat: Enable ingestion of precomputed embeddings (#2317) 2025-05-31 04:03:37 -06:00
Charlie Doern
a7ecc92be1
docs: add post training to providers list (#2280)
# What does this PR do?

the providers list is missing post_training. Add that column and
`HuggingFace`, `TorchTune`, and `NVIDIA NEMO` as supported providers.

also point to these providers in docs/source/providers/index.md, and
describe basic functionality

There are other missing provider types here as well, but starting with
this

Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
2025-05-28 09:32:00 -04:00
raghotham
c25bd0ad58
fix: use pypi browser agent (#2260)
Getting this error from pypi of late

```
'python-requests/2.32.3 User-Agents are currently blocked from accessing JSON release resources. A cluster is apparently crawling all project/release resources resulting in excess cache misses. Please contact admin@pypi.org if you have information regarding what this software may be.'
```
2025-05-24 23:26:30 -07:00
Jorge Piedrahita Ortiz
633bb9c5b3
feat(providers): sambanova safety provider (#2221)
# What does this PR do?

Includes SambaNova safety adaptor to use the sambanova cloud served
Meta-Llama-Guard-3-8B
minor updates in sambanova docs

## Test Plan
pytest -s -v tests/integration/safety/test_safety.py
--stack-config=sambanova --safety-shield=sambanova/Meta-Llama-Guard-3-8B
2025-05-21 15:33:02 -07:00
Varsha
e92301f2d7
feat(sqlite-vec): enable keyword search for sqlite-vec (#1439)
# What does this PR do?
This PR introduces support for keyword based FTS5 search with BM25
relevance scoring. It makes changes to the existing EmbeddingIndex base
class in order to support a search_mode and query_str parameter, that
can be used for keyword based search implementations.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
run 
```
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
```
Output:
```
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
/Users/vnarsing/miniconda3/envs/stack-client/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"

  warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
====================================================== test session starts =======================================================
platform darwin -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /Users/vnarsing/miniconda3/envs/stack-client/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.16', 'Platform': 'macOS-14.7.4-arm64-arm-64bit', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0'}}
rootdir: /Users/vnarsing/go/src/github/meta-llama/llama-stack
configfile: pyproject.toml
plugins: html-4.1.1, metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0
asyncio: mode=auto, asyncio_default_fixture_loop_scope=None
collected 7 items                                                                                                                

llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_add_chunks PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_vector PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_fts PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_chunk_id_conflict PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_register_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_unregister_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_generate_chunk_id PASSED
```


For reference, with the implementation, the fts table looks like below:
```
Chunk ID: 9fbc39ce-c729-64a2-260f-c5ec9bb2a33e, Content: Sentence 0 from document 0
Chunk ID: 94062914-3e23-44cf-1e50-9e25821ba882, Content: Sentence 1 from document 0
Chunk ID: e6cfd559-4641-33ba-6ce1-7038226495eb, Content: Sentence 2 from document 0
Chunk ID: 1383af9b-f1f0-f417-4de5-65fe9456cc20, Content: Sentence 3 from document 0
Chunk ID: 2db19b1a-de14-353b-f4e1-085e8463361c, Content: Sentence 4 from document 0
Chunk ID: 9faf986a-f028-7714-068a-1c795e8f2598, Content: Sentence 5 from document 0
Chunk ID: ef593ead-5a4a-392f-7ad8-471a50f033e8, Content: Sentence 6 from document 0
Chunk ID: e161950f-021f-7300-4d05-3166738b94cf, Content: Sentence 7 from document 0
Chunk ID: 90610fc4-67c1-e740-f043-709c5978867a, Content: Sentence 8 from document 0
Chunk ID: 97712879-6fff-98ad-0558-e9f42e6b81d3, Content: Sentence 9 from document 0
Chunk ID: aea70411-51df-61ba-d2f0-cb2b5972c210, Content: Sentence 0 from document 1
Chunk ID: b678a463-7b84-92b8-abb2-27e9a1977e3c, Content: Sentence 1 from document 1
Chunk ID: 27bd63da-909c-1606-a109-75bdb9479882, Content: Sentence 2 from document 1
Chunk ID: a2ad49ad-f9be-5372-e0c7-7b0221d0b53e, Content: Sentence 3 from document 1
Chunk ID: cac53bcd-1965-082a-c0f4-ceee7323fc70, Content: Sentence 4 from document 1
```

Query results:
Result 1: Sentence 5 from document 0
Result 2: Sentence 5 from document 1
Result 3: Sentence 5 from document 2

[//]: # (## Documentation)

---------

Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
2025-05-21 15:24:24 -04:00
Sébastien Han
85b5f3172b
docs: misc cleanup (#2223)
# What does this PR do?

* remove requirements.txt to use pyproject.toml as the source of truth
* update relevant docs

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-21 17:35:27 +02:00
Sébastien Han
1862de4be5
chore: clarify cache_ttl to be key_recheck_period (#2220)
# What does this PR do?

The cache_ttl config value is not in fact tied to the lifetime of any of
the keys, it represents the time interval between for our key cache
refresher.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-21 17:30:23 +02:00
Sébastien Han
c25acedbcd
chore: remove k8s auth in favor of k8s jwks endpoint (#2216)
# What does this PR do?

Kubernetes since 1.20 exposes a JWKS endpoint that we can use with our
recent oauth2 recent implementation.
The CI test has been kept intact for validation.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-21 16:23:54 +02:00
liangwen12year
2890243107
feat(quota): add server‑side per‑client request quotas (requires auth) (#2096)
# What does this PR do?
feat(quota): add server‑side per‑client request quotas (requires auth)
    
Unrestricted usage can lead to runaway costs and fragmented client-side
    workarounds. This commit introduces a native quota mechanism to the
    server, giving operators a unified, centrally managed throttle for
    per-client requests—without needing extra proxies or custom client
logic. This helps contain cloud-compute expenses, enables fine-grained
usage control, and simplifies deployment and monitoring of Llama Stack
services. Quotas are fully opt-in and have no effect unless explicitly
    configured.
    
    Notice that Quotas are fully opt-in and require authentication to be
enabled. The 'sqlite' is the only supported quota `type` at this time,
any other `type` will be rejected. And the only supported `period` is
    'day'.
    
    Highlights:
    
    - Adds `QuotaMiddleware` to enforce per-client request quotas:
      - Uses `Authorization: Bearer <client_id>` (from
        AuthenticationMiddleware)
      - Tracks usage via a SQLite-based KV store
      - Returns 429 when the quota is exceeded
    
    - Extends `ServerConfig` with a `quota` section (type + config)
    
- Enforces strict coupling: quotas require authentication or the server
      will fail to start
    
    Behavior changes:
    - Quotas are disabled by default unless explicitly configured
    - SQLite defaults to `./quotas.db` if no DB path is set
    - The server requires authentication when quotas are enabled
    
    To enable per-client request quotas in `run.yaml`, add:
    ```
    server:
      port: 8321
      auth:
        provider_type: "custom"
        config:
          endpoint: "https://auth.example.com/validate"
      quota:
        type: sqlite
        config:
          db_path: ./quotas.db
          limit:
            max_requests: 1000
            period: day

[//]: # (If resolving an issue, uncomment and update the line below)
Closes #2093

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Signed-off-by: Wen Liang <wenliang@redhat.com>
Co-authored-by: Wen Liang <wenliang@redhat.com>
2025-05-21 10:58:45 +02:00
Abhishek koserwal
5a3d777b20
feat: add llama stack rm command (#2127)
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]

```
llama stack rm llamastack-test
```

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
#225 

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)
2025-05-21 10:25:51 +02:00
Charlie Doern
f02f7b28c1
feat: add huggingface post_training impl (#2132)
# What does this PR do?


adds an inline HF SFTTrainer provider. Alongside touchtune -- this is a
super popular option for running training jobs. The config allows a user
to specify some key fields such as a model, chat_template, device, etc

the provider comes with one recipe `finetune_single_device` which works
both with and without LoRA.

any model that is a valid HF identifier can be given and the model will
be pulled.

this has been tested so far with CPU and MPS device types, but should be
compatible with CUDA out of the box

The provider processes the given dataset into the proper format,
establishes the various steps per epoch, steps per save, steps per eval,
sets a sane SFTConfig, and runs n_epochs of training

if checkpoint_dir is none, no model is saved. If there is a checkpoint
dir, a model is saved every `save_steps` and at the end of training.


## Test Plan

re-enabled post_training integration test suite with a singular test
that loads the simpleqa dataset:
https://huggingface.co/datasets/llamastack/simpleqa and a tiny granite
model: https://huggingface.co/ibm-granite/granite-3.3-2b-instruct. The
test now uses the llama stack client and the proper post_training API

runs one step with a batch_size of 1. This test runs on CPU on the
Ubuntu runner so it needs to be a small batch and a single step.

[//]: # (## Documentation)

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-05-16 14:41:28 -07:00
Charlie Doern
1ae61e8d5f
fix: replace all instances of --yaml-config with --config (#2196)
# What does this PR do?

start_stack.sh was using --yaml-config which is deprecated.

a bunch of distro docs also mentioned --yaml-config. Replaces all
instances and logic for --yaml-config with --config

resolves #2189

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-05-16 14:31:12 -07:00
grs
b8f7e1504d
feat: allow the interface on which the server will listen to be configured (#2015)
# What does this PR do?

It may not always be desirable to listen on all interfaces, which is the
default. As an example, by listening instead only on a loopback
interface, the server cannot be reached except from within the host it
is run on. This PR makes this configurable, through a CLI option, an env
var or an entry on the config file.

## Test Plan

I ran a server with and without the added CLI argument to verify that
the argument is used if provided, but the default is as it was before if
not.

Signed-off-by: Gordon Sim <gsim@redhat.com>
2025-05-16 12:59:31 -07:00
Charlie Doern
e46de23be6
feat: refactor external providers dir (#2049)
# What does this PR do?

currently the "default" dir for external providers is
`/etc/llama-stack/providers.d`

This dir is not used anywhere nor created.

Switch to a more friendly `~/.llama/providers.d/`

This allows external providers to actually create this dir and/or
populate it upon installation, `pip` cannot create directories in `etc`.

If a user does not specify a dir, default to this one

see https://github.com/containers/ramalama-stack/issues/36

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-05-15 20:17:03 +02:00
Yuan Tang
7e25c8df28
fix: ReadTheDocs should display all versions (#2172)
# What does this PR do?

Currently the website only displays the "latest" version. This is
because our config and workflow do not include version information. This
PR adds missing version info.

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-05-15 11:41:15 -04:00
Francisco Arceo
8e7ab146f8
feat: Adding support for customizing chunk context in RAG insertion and querying (#2134)
# What does this PR do?
his PR allows users to customize the template used for chunks when
inserted into the context. Additionally, this enables metadata injection
into the context of an LLM for RAG. This makes a naive and crude
assumption that each chunk should include the metadata, this is
obviously redundant when multiple chunks are returned from the same
document. In order to remove any sort of duplication of chunks, we'd
have to make much more significant changes so this is a reasonable first
step that unblocks users requesting this enhancement in
https://github.com/meta-llama/llama-stack/issues/1767.

In the future, this can be extended to support citations.


List of Changes:
- `llama_stack/apis/tools/rag_tool.py`
    - Added  `chunk_template` field in `RAGQueryConfig`.
- Added `field_validator` to validate the `chunk_template` field in
`RAGQueryConfig`.
- Ensured the `chunk_template` field includes placeholders `{index}` and
`{chunk.content}`.
- Updated the `query` method to use the `chunk_template` for formatting
chunk text content.
- `llama_stack/providers/inline/tool_runtime/rag/memory.py`
- Modified the `insert` method to pass `doc.metadata` for chunk
creation.
- Enhanced the `query` method to format results using `chunk_template`
and exclude unnecessary metadata fields like `token_count`.
- `llama_stack/providers/utils/memory/vector_store.py`
- Updated `make_overlapped_chunks` to include metadata serialization and
token count for both content and metadata.
    - Added error handling for metadata serialization issues.
- `pyproject.toml`
- Added `pydantic.field_validator` as a recognized `classmethod`
decorator in the linting configuration.
- `tests/integration/tool_runtime/test_rag_tool.py`
- Refactored test assertions to separate `assert_valid_chunk_response`
and `assert_valid_text_response`.
- Added integration tests to validate `chunk_template` functionality
with and without metadata inclusion.
- Included a test case to ensure `chunk_template` validation errors are
raised appropriately.
- `tests/unit/rag/test_vector_store.py`
- Added unit tests for `make_overlapped_chunks`, verifying chunk
creation with overlapping tokens and metadata integrity.
- Added tests to handle metadata serialization errors, ensuring proper
exception handling.
- `docs/_static/llama-stack-spec.html`
- Added a new `chunk_template` field of type `string` with a default
template for formatting retrieved chunks in RAGQueryConfig.
    - Updated the `required` fields to include `chunk_template`.
- `docs/_static/llama-stack-spec.yaml`
- Introduced `chunk_template` field with a default value for
RAGQueryConfig.
- Updated the required configuration list to include `chunk_template`.
- `docs/source/building_applications/rag.md`
- Documented the `chunk_template` configuration, explaining how to
customize metadata formatting in RAG queries.
- Added examples demonstrating the usage of the `chunk_template` field
in RAG tool queries.
    - Highlighted default values for `RAG` agent configurations.

# Resolves https://github.com/meta-llama/llama-stack/issues/1767

## Test Plan
Updated both `test_vector_store.py` and `test_rag_tool.py` and tested
end-to-end with a script.

I also tested the quickstart to enable this and specified this metadata:
```python
document = RAGDocument(
    document_id="document_1",
    content=source,
    mime_type="text/html",
    metadata={"author": "Paul Graham", "title": "How to do great work"},
)
```
Which produced the output below: 

![Screenshot 2025-05-13 at 10 53
43 PM](https://github.com/user-attachments/assets/bb199d04-501e-4217-9c44-4699d43d5519)

This highlights the usefulness of the additional metadata. Notice how
the metadata is redundant for different chunks of the same document. I
think we can update that in a subsequent PR.

# Documentation
I've added a brief comment about this in the documentation to outline
this to users and updated the API documentation.

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-05-14 21:56:20 -04:00
Ihar Hrachyshka
1de0dfaab5
docs: Clarify kfp provider is both inline and remote (#2144)
The provider selling point *is* using the same provider for both.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-14 09:37:07 +02:00
Nathan Weinberg
e0d10dd0b1
docs: revamp testing documentation (#2155)
# What does this PR do?
reduces duplication and centralizes information to be easier to find for
contributors

Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
2025-05-13 11:28:29 -07:00
Divya
c985ea6326
fix: Adding Embedding model to watsonx inference (#2118)
# What does this PR do?
Issue Link : https://github.com/meta-llama/llama-stack/issues/2117

## Test Plan
Once added, User will be able to use Sentence Transformer model
`all-MiniLM-L6-v2`
2025-05-12 10:58:22 -07:00
Sébastien Han
43e623eea6
chore: remove last instances of code-interpreter provider (#2143)
Was removed in https://github.com/meta-llama/llama-stack/pull/2087

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-12 10:54:43 -07:00
Ashwin Bharambe
473a07f624
fix: revert "feat(provider): adding llama4 support in together inference provider (#2123)" (#2124)
This reverts commit 0f878ad87a.

The llama4 models already existed for Together.

cc @yogishbaliga @bbrowning
2025-05-08 15:18:16 -07:00
Yogish Baliga
0f878ad87a
feat(provider): adding llama4 support in together inference provider (#2123)
# What does this PR do?
Adding Llama4 model support in TogetherAI provider
2025-05-08 14:27:56 -07:00
Jorge Piedrahita Ortiz
b2b00a216b
feat(providers): sambanova updated to use LiteLLM openai-compat (#1596)
# What does this PR do?

switch sambanova inference adaptor to LiteLLM usage to simplify
integration and solve issues with current adaptor when streaming and
tool calling, models and templates updated

## Test Plan
pytest -s -v tests/integration/inference/test_text_inference.py
--stack-config=sambanova
--text-model=sambanova/Meta-Llama-3.3-70B-Instruct

pytest -s -v tests/integration/inference/test_vision_inference.py
--stack-config=sambanova
--vision-model=sambanova/Llama-3.2-11B-Vision-Instruct
2025-05-06 16:50:22 -07:00
Christian Zaccaria
feb9eb8b0d
docs: Remove datasets.rst and fix llama-stack build commands (#2061)
# Issue
Closes #2073 

# What does this PR do?
- Removes the `datasets.rst` from the list of document urls as it no
longer exists in torchtune. Referenced PR:
https://github.com/pytorch/torchtune/pull/1781

- Added a step to run `uv sync`. Previously, I would get the following
error:

```
➜  llama-stack git:(remove-deprecated-rst) uv venv --python 3.10
source .venv/bin/activate
Using CPython 3.10.13 interpreter at: /usr/bin/python3.10
Creating virtual environment at: .venv
Activate with: source .venv/bin/activate
(llama-stack) ➜  llama-stack git:(remove-deprecated-rst) INFERENCE_MODEL=llama3.2:3b llama stack build --template ollama --image-type venv --run
zsh: llama: command not found...

```

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

To test: Run through `rag_agent` example in the `detailed_tutorial.md`
file.

[//]: # (## Documentation)
2025-05-06 09:51:20 -07:00
Divya
3022f7b642
feat: Adding TLS support for Remote::Milvus vector_io (#2011)
# What does this PR do?
For the Issue :-
#[2010](https://github.com/meta-llama/llama-stack/issues/2010)
Currently, if we try to connect the Llama stack server to a remote
Milvus instance that has TLS enabled, the connection fails because TLS
support is not implemented in the Llama stack codebase. As a result,
users are unable to use secured Milvus deployments out of the box.

After adding this , the user will be able to connect to remote::Milvus
which is TLS enabled .
if TLS enabled :-
```
vector_io:
  - provider_id: milvus
    provider_type: remote::milvus
    config:
      uri: "http://<host>:<port>"
      token: "<user>:<password>"
      secure: True
      server_pem_path: "path/to/server.pem"
```
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
I have already tested it by connecting to a Milvus instance which is TLS
enabled and i was able to start llama stack server .
2025-05-06 14:15:34 +02:00
Christina Xu
65cc971877
docs: Add TrustyAI LM-Eval to list of known external providers (#2020)
# What does this PR do?
Adds documentation for the remote [TrustyAI LM-Eval Eval
Provider](https://github.com/trustyai-explainability/llama-stack-provider-lmeval).
LM-Eval is a service for large language model evaluation based on the
open source project
[lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness)
and is integrated into the [TrustyAI Kubernetes
Operator](https://trustyai-explainability.github.io/trustyai-site/main/trustyai-operator.html).
2025-05-06 14:11:55 +02:00
Sébastien Han
a5d151e912
docs: fix typo mivus.md -> milvus.md (#2102)
Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-05 09:48:38 -07:00
Ihar Hrachyshka
16e163da0e
docs: List external kubeflow pipelines provider prototype (#2100)
# What does this PR do?

Lists another external provider example (kfp).

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-05 10:24:52 +02:00
Ashwin Bharambe
272d3359ee
fix: remove code interpeter implementation (#2087)
# What does this PR do?

The builtin implementation of code interpreter is not robust and has a
really weak sandboxing shell (the `bubblewrap` container). Given the
availability of better MCP code interpreter servers coming up, we should
use them instead of baking an implementation into the Stack and
expanding the vulnerability surface to the rest of the Stack.

This PR only does the removal. We will add examples with how to
integrate with MCPs in subsequent ones.

## Test Plan

Existing tests.
2025-05-01 14:35:08 -07:00
Sébastien Han
79851d93aa
feat: Add Kubernetes authentication (#1778)
# What does this PR do?

This commit adds a new authentication system to the Llama Stack server
with support for Kubernetes and custom authentication providers. Key
changes include:

- Implemented KubernetesAuthProvider for validating Kubernetes service
account tokens
- Implemented CustomAuthProvider for validating tokens against external
endpoints - this is the same code that was already present.
- Added test for Kubernetes
- Updated server configuration to support authentication settings
- Added documentation for authentication configuration and usage

The authentication system supports:
- Bearer token validation
- Kubernetes service account token validation
- Custom authentication endpoints

## Test Plan

Setup a Kube cluster using Kind or Minikube.

Run a server with:

```
server:
  port: 8321
  auth:
    provider_type: kubernetes
    config:
      api_server_url: http://url
      ca_cert_path: path/to/cert (optional)
```

Run:

```
curl -s -L -H "Authorization: Bearer $(kubectl create token my-user)" http://127.0.0.1:8321/v1/providers
```

Or replace "my-user" with your service account.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-28 22:24:58 +02:00
Rashmi Pawar
e6bbf8d20b
feat: Add NVIDIA NeMo datastore (#1852)
# What does this PR do?
Implemetation of NeMO Datastore register, unregister API.

Open Issues: 
- provider_id gets set to `localfs` in client.datasets.register() as it
is specified in routing_tables.py: DatasetsRoutingTable
see: #1860

Currently I have passed `"provider_id":"nvidia"` in metadata and have
parsed that in `DatasetsRoutingTable`
(Not the best approach, but just a quick workaround to make it work for
now.)

## Test Plan
- Unit test cases: `pytest
tests/unit/providers/nvidia/test_datastore.py`
```bash
========================================================== test session starts ===========================================================
platform linux -- Python 3.10.0, pytest-8.3.5, pluggy-1.5.0
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: anyio-4.9.0, asyncio-0.26.0, nbval-0.11.0, metadata-3.1.1, html-4.1.1, cov-6.1.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function
collected 2 items                                                                                                                        

tests/unit/providers/nvidia/test_datastore.py ..                                                                                   [100%]

============================================================ warnings summary ============================================================

====================================================== 2 passed, 1 warning in 0.84s ======================================================
```

cc: @dglogo, @mattf, @yanxi0830
2025-04-28 09:41:59 -07:00
Derek Higgins
0e4307de0f
docs: Fix missing --gpu all flag in Docker run commands (#2026)
adding the --gpu all flag to Docker run commands
for meta-reference-gpu distributions ensures models are loaded into GPU
instead of CPU.

Remove docs for meta-reference-quantized-gpu
The distribution was removed in #1887
but these files were left behind.


Fixes: #1798

# What does this PR do?
Fixes doc to add --gpu all command to docker run

[//]: # (If resolving an issue, uncomment and update the line below)
Closes #1798

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

verified in docker documentation but untested

---------

Signed-off-by: Derek Higgins <derekh@redhat.com>
2025-04-25 12:17:31 -07:00
Sajikumar JS
1bb1d9b2ba
feat: Add watsonx inference adapter (#1895)
# What does this PR do?
IBM watsonx ai added as the inference [#1741
](https://github.com/meta-llama/llama-stack/issues/1741)

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

---------

Co-authored-by: Sajikumar JS <sajikumar.js@ibm.com>
2025-04-25 11:29:21 -07:00
Rashmi Pawar
ace82836c1
feat: NVIDIA allow non-llama model registration (#1859)
# What does this PR do?
Adds custom model registration functionality to NVIDIAInferenceAdapter
which let's the inference happen on:
- post-training model
- non-llama models in API Catalogue(behind
https://integrate.api.nvidia.com and endpoints compatible with
AyncOpenAI)

## Example Usage:
```python
from llama_stack.apis.models import Model, ModelType
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
client = LlamaStackAsLibraryClient("nvidia")
_ = client.initialize()

client.models.register(
        model_id=model_name,
        model_type=ModelType.llm,
        provider_id="nvidia"
)

response = client.inference.chat_completion(
    model_id=model_name,
    messages=[{"role":"system","content":"You are a helpful assistant."},{"role":"user","content":"Write a limerick about the wonders of GPU computing."}],
)
```

## Test Plan
```bash
pytest tests/unit/providers/nvidia/test_supervised_fine_tuning.py 
========================================================== test session starts ===========================================================
platform linux -- Python 3.10.0, pytest-8.3.5, pluggy-1.5.0
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: anyio-4.9.0
collected 6 items                                                                                                                        

tests/unit/providers/nvidia/test_supervised_fine_tuning.py ......                                                                  [100%]

============================================================ warnings summary ============================================================
../miniconda/envs/nvidia-1/lib/python3.10/site-packages/pydantic/fields.py:1076
  /home/ubuntu/miniconda/envs/nvidia-1/lib/python3.10/site-packages/pydantic/fields.py:1076: PydanticDeprecatedSince20: Using extra keyword arguments on `Field` is deprecated and will be removed. Use `json_schema_extra` instead. (Extra keys: 'contentEncoding'). Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.11/migration/
    warn(

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
====================================================== 6 passed, 1 warning in 1.51s ======================================================
```

[//]: # (## Documentation)
Updated Readme.md

cc: @dglogo, @sumitb, @mattf
2025-04-24 17:13:33 -07:00
Jash Gulabrai
cc77f79f55
feat: Add NVIDIA Eval integration (#1890)
# What does this PR do?
This PR adds support for NVIDIA's NeMo Evaluator API to the Llama Stack
eval module. The integration enables users to evaluate models via the
Llama Stack interface.

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
1. Added unit tests and successfully ran from root of project:
`./scripts/unit-tests.sh tests/unit/providers/nvidia/test_eval.py`
```
tests/unit/providers/nvidia/test_eval.py::TestNVIDIAEvalImpl::test_job_cancel PASSED
tests/unit/providers/nvidia/test_eval.py::TestNVIDIAEvalImpl::test_job_result PASSED
tests/unit/providers/nvidia/test_eval.py::TestNVIDIAEvalImpl::test_job_status PASSED
tests/unit/providers/nvidia/test_eval.py::TestNVIDIAEvalImpl::test_register_benchmark PASSED
tests/unit/providers/nvidia/test_eval.py::TestNVIDIAEvalImpl::test_run_eval PASSED
```
2. Verified I could build the Llama Stack image: `LLAMA_STACK_DIR=$(pwd)
llama stack build --template nvidia --image-type venv`

Documentation added to
`llama_stack/providers/remote/eval/nvidia/README.md`

---------

Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
2025-04-24 17:12:42 -07:00
Charlie Doern
a673697858
chore: rename ramalama provider (#2008)
# What does this PR do?

the ramalama team has decided to rename their external provider
`ramalama-stack` (more catchy!). Update docs accordingly

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-04-24 09:34:15 +02:00
Nathan Weinberg
6a44e7ba20
docs: add API to external providers table (#2006)
Also does a minor reorg of the columns

Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
2025-04-23 15:58:10 +02:00
Kevin Postlethwait
e0fa67c81c
docs: add examples for how to define RAG docs (#1981)
# What does this PR do?
Add examples for how to define RAGDocuments. Not sure if this is the
best place for these docs. @raghotham Please advise

## Test Plan
None, documentation

[//]: # (## Documentation)

Signed-off-by: Kevin <kpostlet@redhat.com>
2025-04-23 15:39:18 +02:00
Nathan Weinberg
d6e88e0bc6
docs: add RamaLama to list of known external providers (#2004)
The RamaLama project now has an external provider offering for Llama
Stack: https://github.com/containers/llama-stack-provider-ramalama

See also: https://github.com/meta-llama/llama-stack/pull/1676

Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
2025-04-23 09:44:18 +02:00
Jash Gulabrai
0d06c654d0
feat: Update NVIDIA to GA docs; remove notebook reference until ready (#1999)
# What does this PR do?
- Update NVIDIA documentation links to GA docs
- Remove reference to notebooks until merged

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
2025-04-18 19:13:18 -04:00
Sébastien Han
94f83382eb
feat: allow building distro with external providers (#1967)
# What does this PR do?

We can now build a distribution that includes external providers.
Closes: https://github.com/meta-llama/llama-stack/issues/1948

## Test Plan

Build a distro with an external provider following the doc instructions.

[//]: # (## Documentation)

Added.

Rendered:


![Screenshot 2025-04-18 at 11 26
39](https://github.com/user-attachments/assets/afcf3d50-8d30-48c3-8d24-06a4b3662881)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-18 17:18:28 +02:00
Yuan Tang
c4570bcb48
docs: Add tips for debugging remote vLLM provider (#1992)
# What does this PR do?

This is helpful when debugging issues with vLLM + Llama Stack after this
PR https://github.com/vllm-project/vllm/pull/15593

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-04-18 14:47:47 +02:00
Yuan Tang
4c6b7005fa
fix: Fix docs lint issues (#1993)
# What does this PR do?

This was not caught as part of the CI build:
dd62a2388c.
[This PR](https://github.com/meta-llama/llama-stack/pull/1354) was too
old and didn't include the additional CI builds yet.

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-04-18 02:33:13 -04:00
AN YU (安宇)
dd62a2388c
docs: add notes to websearch tool and two extra example scripts (#1354)
# What does this PR do?

- Adds a note about unexpected Brave Search output appearing even when
Tavily Search is called. This behavior is expected for now and is a work
in progress https://github.com/meta-llama/llama-stack/issues/1229. The
note aims to clear any confusion for new users.
- Adds two example scripts demonstrating how to build an agent using:
    1. WebSearch tool
    2. WolframAlpha tool
These examples provide new users with an instant understanding of how to
integrate these tools.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
Tested these example scripts using following steps:
step 1. `ollama run llama3.2:3b-instruct-fp16 --keepalive 60m`
step 2. 
```
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
export LLAMA_STACK_PORT=8321
```
step 3: `llama stack run --image-type conda
~/llama-stack/llama_stack/templates/ollama/run.yaml`
step 4: run the example script with your api keys.

expected output:

![image](https://github.com/user-attachments/assets/308ddb17-a087-4cf2-8622-b085174ea0ab)

![image](https://github.com/user-attachments/assets/639f239f-8966-433d-943c-ee6b304c0d71)


[//]: # (## Documentation)
2025-04-17 20:20:52 -04:00
Matthew Farrellee
4205376653
chore: add meta/llama-3.3-70b-instruct as supported nvidia inference provider model (#1985)
see https://build.nvidia.com/meta/llama-3_3-70b-instruct
2025-04-17 06:50:40 -07:00
Jash Gulabrai
2ae1d7f4e6
docs: Add NVIDIA platform distro docs (#1971)
# What does this PR do?
Add NVIDIA platform docs that serve as a starting point for Llama Stack
users and explains all supported microservices.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

---------

Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
2025-04-17 05:54:30 -07:00
Chirag Modi
fb8ff77ff2
docs: 0.2.2 doc updates (#1961)
Add updates to android site readme for 0.2.2
2025-04-15 13:26:17 -07:00
Dmitry Rogozhkin
71ed47ea76
docs: add example for intel gpu in vllm remote (#1952)
# What does this PR do?

PR adds instructions to setup vLLM remote endpoint for vllm-remote llama
stack distribution.

## Test Plan

* Verified with manual tests of the configured vllm-remote against vllm
endpoint running on the system with Intel GPU
* Also verified with ci pytests (see cmdline below). Test passes in the
same capacity as it does on the A10 Nvidia setup (some tests do fail
which seems to be known issues with vllm remote llama stack
distribution)

```
pytest -s -v tests/integration/inference/test_text_inference.py \
   --stack-config=http://localhost:5001 \
   --text-model=meta-llama/Llama-3.2-3B-Instruct
```

CC: @ashwinb

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2025-04-15 07:56:23 -07:00
Ben Browning
7641a5cd0b
fix: 100% OpenAI API verification for together and fireworks (#1946)
# What does this PR do?

TLDR: Changes needed to get 100% passing tests for OpenAI API
verification tests when run against Llama Stack with the `together`,
`fireworks`, and `openai` providers. And `groq` is better than before,
at 88% passing.

This cleans up the OpenAI API support for image message types
(specifically `image_url` types) and handling of the `response_format`
chat completion parameter. Both of these required a few more Pydantic
model definitions in our Inference API, just to move from the
not-quite-right stubs I had in place to something fleshed out to match
the actual OpenAI API specs.

As part of testing this, I also found and fixed a bug in the litellm
implementation of openai_completion and openai_chat_completion, so the
providers based on those should actually be working now.

The method `prepare_openai_completion_params` in
`llama_stack/providers/utils/inference/openai_compat.py` was improved to
actually recursively clean up input parameters, including handling of
lists, dicts, and dumping of Pydantic models to dicts. These changes
were required to get to 100% passing tests on the OpenAI API
verification against the `openai` provider.

With the above, the together.ai provider was passing as well as it is
without Llama Stack. But, since we have Llama Stack in the middle, I
took the opportunity to clean up the together.ai provider so that it now
also passes the OpenAI API spec tests we have at 100%. That means
together.ai is now passing our verification test better when using an
OpenAI client talking to Llama Stack than it is when hitting together.ai
directly, without Llama Stack in the middle.

And, another round of work for Fireworks to improve translation of
incoming OpenAI chat completion requests to Llama Stack chat completion
requests gets the fireworks provider passing at 100%. The server-side
fireworks.ai tool calling support with OpenAI chat completions and Llama
4 models isn't great yet, but by pointing the OpenAI clients at Llama
Stack's API we can clean things up and get everything working as
expected for Llama 4 models.

## Test Plan

### OpenAI API Verification Tests

I ran the OpenAI API verification tests as below and 100% of the tests
passed.

First, start a Llama Stack server that runs the `openai` provider with
the `gpt-4o` and `gpt-4o-mini` models deployed. There's not a template
setup to do this out of the box, so I added a
`tests/verifications/openai-api-verification-run.yaml` to do this.

First, ensure you have the necessary API key environment variables set:

```
export TOGETHER_API_KEY="..."
export FIREWORKS_API_KEY="..."
export OPENAI_API_KEY="..."
```

Then, run a Llama Stack server that serves up all these providers:

```
llama stack run \
      --image-type venv \
      tests/verifications/openai-api-verification-run.yaml
```

Finally, generate a new verification report against all these providers,
both with and without the Llama Stack server in the middle.

```
python tests/verifications/generate_report.py \
      --run-tests \
      --provider \
        together \
        fireworks \
        groq \
        openai \
        together-llama-stack \
        fireworks-llama-stack \
        groq-llama-stack \
        openai-llama-stack
```

You'll see that most of the configurations with Llama Stack in the
middle now pass at 100%, even though some of them do not pass at 100%
when hitting the backend provider's API directly with an OpenAI client.

### OpenAI Completion Integration Tests with vLLM:

I also ran the smaller `test_openai_completion.py` test suite (that's
not yet merged with the verification tests) on multiple of the
providers, since I had to adjust the method signature of
openai_chat_completion a bit and thus had to touch lots of these
providers to match. Here's the tests I ran there, all passing:

```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```

### OpenAI Completion Integration Tests with ollama

```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```

### OpenAI Completion Integration Tests with together.ai

```
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" llama stack build --template together --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct-Turbo"
```

### OpenAI Completion Integration Tests with fireworks.ai

```
INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" llama stack build --template fireworks --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.1-8B-Instruct"

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-04-14 08:56:29 -07:00
Sébastien Han
68eeacec0e
docs: resync missing nvidia doc (#1947)
# What does this PR do?

Resync doc.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-14 15:09:16 +02:00