Commit graph

152 commits

Author SHA1 Message Date
Jorge Piedrahita Ortiz
633bb9c5b3
feat(providers): sambanova safety provider (#2221)
# What does this PR do?

Includes SambaNova safety adaptor to use the sambanova cloud served
Meta-Llama-Guard-3-8B
minor updates in sambanova docs

## Test Plan
pytest -s -v tests/integration/safety/test_safety.py
--stack-config=sambanova --safety-shield=sambanova/Meta-Llama-Guard-3-8B
2025-05-21 15:33:02 -07:00
Sébastien Han
1862de4be5
chore: clarify cache_ttl to be key_recheck_period (#2220)
# What does this PR do?

The cache_ttl config value is not in fact tied to the lifetime of any of
the keys, it represents the time interval between for our key cache
refresher.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-21 17:30:23 +02:00
Sébastien Han
c25acedbcd
chore: remove k8s auth in favor of k8s jwks endpoint (#2216)
# What does this PR do?

Kubernetes since 1.20 exposes a JWKS endpoint that we can use with our
recent oauth2 recent implementation.
The CI test has been kept intact for validation.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-21 16:23:54 +02:00
liangwen12year
2890243107
feat(quota): add server‑side per‑client request quotas (requires auth) (#2096)
# What does this PR do?
feat(quota): add server‑side per‑client request quotas (requires auth)
    
Unrestricted usage can lead to runaway costs and fragmented client-side
    workarounds. This commit introduces a native quota mechanism to the
    server, giving operators a unified, centrally managed throttle for
    per-client requests—without needing extra proxies or custom client
logic. This helps contain cloud-compute expenses, enables fine-grained
usage control, and simplifies deployment and monitoring of Llama Stack
services. Quotas are fully opt-in and have no effect unless explicitly
    configured.
    
    Notice that Quotas are fully opt-in and require authentication to be
enabled. The 'sqlite' is the only supported quota `type` at this time,
any other `type` will be rejected. And the only supported `period` is
    'day'.
    
    Highlights:
    
    - Adds `QuotaMiddleware` to enforce per-client request quotas:
      - Uses `Authorization: Bearer <client_id>` (from
        AuthenticationMiddleware)
      - Tracks usage via a SQLite-based KV store
      - Returns 429 when the quota is exceeded
    
    - Extends `ServerConfig` with a `quota` section (type + config)
    
- Enforces strict coupling: quotas require authentication or the server
      will fail to start
    
    Behavior changes:
    - Quotas are disabled by default unless explicitly configured
    - SQLite defaults to `./quotas.db` if no DB path is set
    - The server requires authentication when quotas are enabled
    
    To enable per-client request quotas in `run.yaml`, add:
    ```
    server:
      port: 8321
      auth:
        provider_type: "custom"
        config:
          endpoint: "https://auth.example.com/validate"
      quota:
        type: sqlite
        config:
          db_path: ./quotas.db
          limit:
            max_requests: 1000
            period: day

[//]: # (If resolving an issue, uncomment and update the line below)
Closes #2093

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Signed-off-by: Wen Liang <wenliang@redhat.com>
Co-authored-by: Wen Liang <wenliang@redhat.com>
2025-05-21 10:58:45 +02:00
Abhishek koserwal
5a3d777b20
feat: add llama stack rm command (#2127)
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]

```
llama stack rm llamastack-test
```

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
#225 

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)
2025-05-21 10:25:51 +02:00
Charlie Doern
f02f7b28c1
feat: add huggingface post_training impl (#2132)
# What does this PR do?


adds an inline HF SFTTrainer provider. Alongside touchtune -- this is a
super popular option for running training jobs. The config allows a user
to specify some key fields such as a model, chat_template, device, etc

the provider comes with one recipe `finetune_single_device` which works
both with and without LoRA.

any model that is a valid HF identifier can be given and the model will
be pulled.

this has been tested so far with CPU and MPS device types, but should be
compatible with CUDA out of the box

The provider processes the given dataset into the proper format,
establishes the various steps per epoch, steps per save, steps per eval,
sets a sane SFTConfig, and runs n_epochs of training

if checkpoint_dir is none, no model is saved. If there is a checkpoint
dir, a model is saved every `save_steps` and at the end of training.


## Test Plan

re-enabled post_training integration test suite with a singular test
that loads the simpleqa dataset:
https://huggingface.co/datasets/llamastack/simpleqa and a tiny granite
model: https://huggingface.co/ibm-granite/granite-3.3-2b-instruct. The
test now uses the llama stack client and the proper post_training API

runs one step with a batch_size of 1. This test runs on CPU on the
Ubuntu runner so it needs to be a small batch and a single step.

[//]: # (## Documentation)

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-05-16 14:41:28 -07:00
Charlie Doern
1ae61e8d5f
fix: replace all instances of --yaml-config with --config (#2196)
# What does this PR do?

start_stack.sh was using --yaml-config which is deprecated.

a bunch of distro docs also mentioned --yaml-config. Replaces all
instances and logic for --yaml-config with --config

resolves #2189

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-05-16 14:31:12 -07:00
grs
b8f7e1504d
feat: allow the interface on which the server will listen to be configured (#2015)
# What does this PR do?

It may not always be desirable to listen on all interfaces, which is the
default. As an example, by listening instead only on a loopback
interface, the server cannot be reached except from within the host it
is run on. This PR makes this configurable, through a CLI option, an env
var or an entry on the config file.

## Test Plan

I ran a server with and without the added CLI argument to verify that
the argument is used if provided, but the default is as it was before if
not.

Signed-off-by: Gordon Sim <gsim@redhat.com>
2025-05-16 12:59:31 -07:00
Charlie Doern
e46de23be6
feat: refactor external providers dir (#2049)
# What does this PR do?

currently the "default" dir for external providers is
`/etc/llama-stack/providers.d`

This dir is not used anywhere nor created.

Switch to a more friendly `~/.llama/providers.d/`

This allows external providers to actually create this dir and/or
populate it upon installation, `pip` cannot create directories in `etc`.

If a user does not specify a dir, default to this one

see https://github.com/containers/ramalama-stack/issues/36

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-05-15 20:17:03 +02:00
Divya
c985ea6326
fix: Adding Embedding model to watsonx inference (#2118)
# What does this PR do?
Issue Link : https://github.com/meta-llama/llama-stack/issues/2117

## Test Plan
Once added, User will be able to use Sentence Transformer model
`all-MiniLM-L6-v2`
2025-05-12 10:58:22 -07:00
Sébastien Han
43e623eea6
chore: remove last instances of code-interpreter provider (#2143)
Was removed in https://github.com/meta-llama/llama-stack/pull/2087

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-12 10:54:43 -07:00
Ashwin Bharambe
473a07f624
fix: revert "feat(provider): adding llama4 support in together inference provider (#2123)" (#2124)
This reverts commit 0f878ad87a.

The llama4 models already existed for Together.

cc @yogishbaliga @bbrowning
2025-05-08 15:18:16 -07:00
Yogish Baliga
0f878ad87a
feat(provider): adding llama4 support in together inference provider (#2123)
# What does this PR do?
Adding Llama4 model support in TogetherAI provider
2025-05-08 14:27:56 -07:00
Jorge Piedrahita Ortiz
b2b00a216b
feat(providers): sambanova updated to use LiteLLM openai-compat (#1596)
# What does this PR do?

switch sambanova inference adaptor to LiteLLM usage to simplify
integration and solve issues with current adaptor when streaming and
tool calling, models and templates updated

## Test Plan
pytest -s -v tests/integration/inference/test_text_inference.py
--stack-config=sambanova
--text-model=sambanova/Meta-Llama-3.3-70B-Instruct

pytest -s -v tests/integration/inference/test_vision_inference.py
--stack-config=sambanova
--vision-model=sambanova/Llama-3.2-11B-Vision-Instruct
2025-05-06 16:50:22 -07:00
Ashwin Bharambe
272d3359ee
fix: remove code interpeter implementation (#2087)
# What does this PR do?

The builtin implementation of code interpreter is not robust and has a
really weak sandboxing shell (the `bubblewrap` container). Given the
availability of better MCP code interpreter servers coming up, we should
use them instead of baking an implementation into the Stack and
expanding the vulnerability surface to the rest of the Stack.

This PR only does the removal. We will add examples with how to
integrate with MCPs in subsequent ones.

## Test Plan

Existing tests.
2025-05-01 14:35:08 -07:00
Sébastien Han
79851d93aa
feat: Add Kubernetes authentication (#1778)
# What does this PR do?

This commit adds a new authentication system to the Llama Stack server
with support for Kubernetes and custom authentication providers. Key
changes include:

- Implemented KubernetesAuthProvider for validating Kubernetes service
account tokens
- Implemented CustomAuthProvider for validating tokens against external
endpoints - this is the same code that was already present.
- Added test for Kubernetes
- Updated server configuration to support authentication settings
- Added documentation for authentication configuration and usage

The authentication system supports:
- Bearer token validation
- Kubernetes service account token validation
- Custom authentication endpoints

## Test Plan

Setup a Kube cluster using Kind or Minikube.

Run a server with:

```
server:
  port: 8321
  auth:
    provider_type: kubernetes
    config:
      api_server_url: http://url
      ca_cert_path: path/to/cert (optional)
```

Run:

```
curl -s -L -H "Authorization: Bearer $(kubectl create token my-user)" http://127.0.0.1:8321/v1/providers
```

Or replace "my-user" with your service account.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-28 22:24:58 +02:00
Rashmi Pawar
e6bbf8d20b
feat: Add NVIDIA NeMo datastore (#1852)
# What does this PR do?
Implemetation of NeMO Datastore register, unregister API.

Open Issues: 
- provider_id gets set to `localfs` in client.datasets.register() as it
is specified in routing_tables.py: DatasetsRoutingTable
see: #1860

Currently I have passed `"provider_id":"nvidia"` in metadata and have
parsed that in `DatasetsRoutingTable`
(Not the best approach, but just a quick workaround to make it work for
now.)

## Test Plan
- Unit test cases: `pytest
tests/unit/providers/nvidia/test_datastore.py`
```bash
========================================================== test session starts ===========================================================
platform linux -- Python 3.10.0, pytest-8.3.5, pluggy-1.5.0
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: anyio-4.9.0, asyncio-0.26.0, nbval-0.11.0, metadata-3.1.1, html-4.1.1, cov-6.1.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function
collected 2 items                                                                                                                        

tests/unit/providers/nvidia/test_datastore.py ..                                                                                   [100%]

============================================================ warnings summary ============================================================

====================================================== 2 passed, 1 warning in 0.84s ======================================================
```

cc: @dglogo, @mattf, @yanxi0830
2025-04-28 09:41:59 -07:00
Derek Higgins
0e4307de0f
docs: Fix missing --gpu all flag in Docker run commands (#2026)
adding the --gpu all flag to Docker run commands
for meta-reference-gpu distributions ensures models are loaded into GPU
instead of CPU.

Remove docs for meta-reference-quantized-gpu
The distribution was removed in #1887
but these files were left behind.


Fixes: #1798

# What does this PR do?
Fixes doc to add --gpu all command to docker run

[//]: # (If resolving an issue, uncomment and update the line below)
Closes #1798

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

verified in docker documentation but untested

---------

Signed-off-by: Derek Higgins <derekh@redhat.com>
2025-04-25 12:17:31 -07:00
Sajikumar JS
1bb1d9b2ba
feat: Add watsonx inference adapter (#1895)
# What does this PR do?
IBM watsonx ai added as the inference [#1741
](https://github.com/meta-llama/llama-stack/issues/1741)

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

---------

Co-authored-by: Sajikumar JS <sajikumar.js@ibm.com>
2025-04-25 11:29:21 -07:00
Rashmi Pawar
ace82836c1
feat: NVIDIA allow non-llama model registration (#1859)
# What does this PR do?
Adds custom model registration functionality to NVIDIAInferenceAdapter
which let's the inference happen on:
- post-training model
- non-llama models in API Catalogue(behind
https://integrate.api.nvidia.com and endpoints compatible with
AyncOpenAI)

## Example Usage:
```python
from llama_stack.apis.models import Model, ModelType
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
client = LlamaStackAsLibraryClient("nvidia")
_ = client.initialize()

client.models.register(
        model_id=model_name,
        model_type=ModelType.llm,
        provider_id="nvidia"
)

response = client.inference.chat_completion(
    model_id=model_name,
    messages=[{"role":"system","content":"You are a helpful assistant."},{"role":"user","content":"Write a limerick about the wonders of GPU computing."}],
)
```

## Test Plan
```bash
pytest tests/unit/providers/nvidia/test_supervised_fine_tuning.py 
========================================================== test session starts ===========================================================
platform linux -- Python 3.10.0, pytest-8.3.5, pluggy-1.5.0
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: anyio-4.9.0
collected 6 items                                                                                                                        

tests/unit/providers/nvidia/test_supervised_fine_tuning.py ......                                                                  [100%]

============================================================ warnings summary ============================================================
../miniconda/envs/nvidia-1/lib/python3.10/site-packages/pydantic/fields.py:1076
  /home/ubuntu/miniconda/envs/nvidia-1/lib/python3.10/site-packages/pydantic/fields.py:1076: PydanticDeprecatedSince20: Using extra keyword arguments on `Field` is deprecated and will be removed. Use `json_schema_extra` instead. (Extra keys: 'contentEncoding'). Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.11/migration/
    warn(

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
====================================================== 6 passed, 1 warning in 1.51s ======================================================
```

[//]: # (## Documentation)
Updated Readme.md

cc: @dglogo, @sumitb, @mattf
2025-04-24 17:13:33 -07:00
Jash Gulabrai
cc77f79f55
feat: Add NVIDIA Eval integration (#1890)
# What does this PR do?
This PR adds support for NVIDIA's NeMo Evaluator API to the Llama Stack
eval module. The integration enables users to evaluate models via the
Llama Stack interface.

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
1. Added unit tests and successfully ran from root of project:
`./scripts/unit-tests.sh tests/unit/providers/nvidia/test_eval.py`
```
tests/unit/providers/nvidia/test_eval.py::TestNVIDIAEvalImpl::test_job_cancel PASSED
tests/unit/providers/nvidia/test_eval.py::TestNVIDIAEvalImpl::test_job_result PASSED
tests/unit/providers/nvidia/test_eval.py::TestNVIDIAEvalImpl::test_job_status PASSED
tests/unit/providers/nvidia/test_eval.py::TestNVIDIAEvalImpl::test_register_benchmark PASSED
tests/unit/providers/nvidia/test_eval.py::TestNVIDIAEvalImpl::test_run_eval PASSED
```
2. Verified I could build the Llama Stack image: `LLAMA_STACK_DIR=$(pwd)
llama stack build --template nvidia --image-type venv`

Documentation added to
`llama_stack/providers/remote/eval/nvidia/README.md`

---------

Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
2025-04-24 17:12:42 -07:00
Jash Gulabrai
0d06c654d0
feat: Update NVIDIA to GA docs; remove notebook reference until ready (#1999)
# What does this PR do?
- Update NVIDIA documentation links to GA docs
- Remove reference to notebooks until merged

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
2025-04-18 19:13:18 -04:00
Sébastien Han
94f83382eb
feat: allow building distro with external providers (#1967)
# What does this PR do?

We can now build a distribution that includes external providers.
Closes: https://github.com/meta-llama/llama-stack/issues/1948

## Test Plan

Build a distro with an external provider following the doc instructions.

[//]: # (## Documentation)

Added.

Rendered:


![Screenshot 2025-04-18 at 11 26
39](https://github.com/user-attachments/assets/afcf3d50-8d30-48c3-8d24-06a4b3662881)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-18 17:18:28 +02:00
Yuan Tang
c4570bcb48
docs: Add tips for debugging remote vLLM provider (#1992)
# What does this PR do?

This is helpful when debugging issues with vLLM + Llama Stack after this
PR https://github.com/vllm-project/vllm/pull/15593

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-04-18 14:47:47 +02:00
Matthew Farrellee
4205376653
chore: add meta/llama-3.3-70b-instruct as supported nvidia inference provider model (#1985)
see https://build.nvidia.com/meta/llama-3_3-70b-instruct
2025-04-17 06:50:40 -07:00
Jash Gulabrai
2ae1d7f4e6
docs: Add NVIDIA platform distro docs (#1971)
# What does this PR do?
Add NVIDIA platform docs that serve as a starting point for Llama Stack
users and explains all supported microservices.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

---------

Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
2025-04-17 05:54:30 -07:00
Chirag Modi
fb8ff77ff2
docs: 0.2.2 doc updates (#1961)
Add updates to android site readme for 0.2.2
2025-04-15 13:26:17 -07:00
Dmitry Rogozhkin
71ed47ea76
docs: add example for intel gpu in vllm remote (#1952)
# What does this PR do?

PR adds instructions to setup vLLM remote endpoint for vllm-remote llama
stack distribution.

## Test Plan

* Verified with manual tests of the configured vllm-remote against vllm
endpoint running on the system with Intel GPU
* Also verified with ci pytests (see cmdline below). Test passes in the
same capacity as it does on the A10 Nvidia setup (some tests do fail
which seems to be known issues with vllm remote llama stack
distribution)

```
pytest -s -v tests/integration/inference/test_text_inference.py \
   --stack-config=http://localhost:5001 \
   --text-model=meta-llama/Llama-3.2-3B-Instruct
```

CC: @ashwinb

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2025-04-15 07:56:23 -07:00
Ben Browning
7641a5cd0b
fix: 100% OpenAI API verification for together and fireworks (#1946)
# What does this PR do?

TLDR: Changes needed to get 100% passing tests for OpenAI API
verification tests when run against Llama Stack with the `together`,
`fireworks`, and `openai` providers. And `groq` is better than before,
at 88% passing.

This cleans up the OpenAI API support for image message types
(specifically `image_url` types) and handling of the `response_format`
chat completion parameter. Both of these required a few more Pydantic
model definitions in our Inference API, just to move from the
not-quite-right stubs I had in place to something fleshed out to match
the actual OpenAI API specs.

As part of testing this, I also found and fixed a bug in the litellm
implementation of openai_completion and openai_chat_completion, so the
providers based on those should actually be working now.

The method `prepare_openai_completion_params` in
`llama_stack/providers/utils/inference/openai_compat.py` was improved to
actually recursively clean up input parameters, including handling of
lists, dicts, and dumping of Pydantic models to dicts. These changes
were required to get to 100% passing tests on the OpenAI API
verification against the `openai` provider.

With the above, the together.ai provider was passing as well as it is
without Llama Stack. But, since we have Llama Stack in the middle, I
took the opportunity to clean up the together.ai provider so that it now
also passes the OpenAI API spec tests we have at 100%. That means
together.ai is now passing our verification test better when using an
OpenAI client talking to Llama Stack than it is when hitting together.ai
directly, without Llama Stack in the middle.

And, another round of work for Fireworks to improve translation of
incoming OpenAI chat completion requests to Llama Stack chat completion
requests gets the fireworks provider passing at 100%. The server-side
fireworks.ai tool calling support with OpenAI chat completions and Llama
4 models isn't great yet, but by pointing the OpenAI clients at Llama
Stack's API we can clean things up and get everything working as
expected for Llama 4 models.

## Test Plan

### OpenAI API Verification Tests

I ran the OpenAI API verification tests as below and 100% of the tests
passed.

First, start a Llama Stack server that runs the `openai` provider with
the `gpt-4o` and `gpt-4o-mini` models deployed. There's not a template
setup to do this out of the box, so I added a
`tests/verifications/openai-api-verification-run.yaml` to do this.

First, ensure you have the necessary API key environment variables set:

```
export TOGETHER_API_KEY="..."
export FIREWORKS_API_KEY="..."
export OPENAI_API_KEY="..."
```

Then, run a Llama Stack server that serves up all these providers:

```
llama stack run \
      --image-type venv \
      tests/verifications/openai-api-verification-run.yaml
```

Finally, generate a new verification report against all these providers,
both with and without the Llama Stack server in the middle.

```
python tests/verifications/generate_report.py \
      --run-tests \
      --provider \
        together \
        fireworks \
        groq \
        openai \
        together-llama-stack \
        fireworks-llama-stack \
        groq-llama-stack \
        openai-llama-stack
```

You'll see that most of the configurations with Llama Stack in the
middle now pass at 100%, even though some of them do not pass at 100%
when hitting the backend provider's API directly with an OpenAI client.

### OpenAI Completion Integration Tests with vLLM:

I also ran the smaller `test_openai_completion.py` test suite (that's
not yet merged with the verification tests) on multiple of the
providers, since I had to adjust the method signature of
openai_chat_completion a bit and thus had to touch lots of these
providers to match. Here's the tests I ran there, all passing:

```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```

### OpenAI Completion Integration Tests with ollama

```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```

### OpenAI Completion Integration Tests with together.ai

```
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" llama stack build --template together --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct-Turbo"
```

### OpenAI Completion Integration Tests with fireworks.ai

```
INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" llama stack build --template fireworks --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.1-8B-Instruct"

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-04-14 08:56:29 -07:00
Sébastien Han
68eeacec0e
docs: resync missing nvidia doc (#1947)
# What does this PR do?

Resync doc.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-14 15:09:16 +02:00
Nathan Weinberg
854c2ad264
fix: misleading help text for 'llama stack build' and 'llama stack run' (#1910)
# What does this PR do?
current text for 'llama stack build' and 'llama stack run' says that if
no argument is passed to '--image-name' that the active Conda
environment will be used

in reality, the active enviroment is used whether it is from conda,
virtualenv, etc.

## Test Plan
N/A

## Documentation
N/A

Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
2025-04-12 01:19:11 -07:00
raghotham
ed58a94b30
docs: fixes to quick start (#1943)
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

---------

Co-authored-by: Francisco Arceo <farceo@redhat.com>
2025-04-11 13:41:23 -07:00
Mark Campbell
6aa459b00c
docs: fix errors in kubernetes deployment guide (#1914)
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]
Fixes a couple of errors in PVC/Secret setup and adds context for
expected Hugging Face token
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)
2025-04-11 13:04:13 +02:00
Francisco Arceo
49955a06b1
docs: Update quickstart page to structure things a little more for the novices (#1873)
# What does this PR do?
Another doc enhancement for
https://github.com/meta-llama/llama-stack/issues/1818

Summary of changes:
- `docs/source/distributions/configuration.md`
   - Updated dropdown title to include a more user-friendly description.

- `docs/_static/css/my_theme.css`
   - Added styling for `<h3>` elements to set a normal font weight.

- `docs/source/distributions/starting_llama_stack_server.md`
- Changed section headers from bold text to proper markdown headers
(e.g., `##`).
- Improved descriptions for starting Llama Stack server using different
methods (library, container, conda, Kubernetes).
- Enhanced clarity and structure by converting instructions into
markdown headers and improved formatting.

- `docs/source/getting_started/index.md`
   - Major restructuring of the "Quick Start" guide:
- Added new introductory section for Llama Stack and its capabilities.
- Reorganized steps into clearer subsections with proper markdown
headers.
- Replaced dropdowns with tabbed content for OS-specific instructions.
- Added detailed steps for setting up and running the Llama Stack server
and client.
- Introduced new sections for running basic inference and building
agents.
- Enhanced readability and visual structure with emojis, admonitions,
and examples.

- `docs/source/providers/index.md`
   - Updated the list of LLM inference providers to include "Ollama."
   - Expanded the list of vector databases to include "SQLite-Vec."

Let me know if you need further details!

## Test Plan
Renders locally, included screenshot.

# Documentation

For https://github.com/meta-llama/llama-stack/issues/1818

<img width="1332" alt="Screenshot 2025-04-09 at 11 07 12 AM"
src="https://github.com/user-attachments/assets/c106efb9-076c-4059-a4e0-a30fa738585b"
/>

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-04-10 14:09:00 -07:00
Yuan Tang
1be66d754e
docs: Redirect instructions for additional hardware accelerators for remote vLLM provider (#1923)
# What does this PR do?

vLLM website just added a [new index page for installing for different
hardware
accelerators](https://docs.vllm.ai/en/latest/getting_started/installation.html).
This PR adds a link to that page with additional edits to make sure
readers are aware that the use of GPUs on this page are for
demonstration purposes only.

This closes https://github.com/meta-llama/llama-stack/issues/1813.

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-04-10 10:04:17 +02:00
Yuan Tang
712c6758c6
docs: Avoid bash script syntax highlighting for dark mode (#1918)
See
https://github.com/meta-llama/llama-stack/pull/1913#issuecomment-2790153778

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-04-09 15:43:43 -07:00
AlexHe99
983f6feeb8
docs: Update remote-vllm.md with AMD GPU vLLM server supported. (#1858)
Add the content to use AMD GPU as the vLLM server. Split the original
part to two sub chapters,
1. AMD vLLM server
2. NVIDIA vLLM server (orignal)

# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

---------

Signed-off-by: Alex He <alehe@amd.com>
2025-04-08 21:35:32 -07:00
ehhuang
7b4eb0967e
test: verification on provider's OAI endpoints (#1893)
# What does this PR do?


## Test Plan
export MODEL=accounts/fireworks/models/llama4-scout-instruct-basic;
LLAMA_STACK_CONFIG=verification pytest -s -v tests/integration/inference
--vision-model $MODEL --text-model $MODEL
2025-04-07 23:06:28 -07:00
Matthew Farrellee
c52ccc4bbd
docs: update importing_as_library.md (#1863)
LlamaStackAsLibraryClient.initialize is not async, cannot be await'd
2025-04-07 12:31:04 +02:00
Francisco Arceo
d495922949
docs: Updated documentation and Sphinx configuration (#1845)
# What does this PR do?

The goal of this PR is to make the pages easier to navigate by surfacing
the child pages on the navbar, updating some of the copy, moving some of
the files around.

Some changes:
1. Clarifying Titles
2. Restructuring "Distributions" more formally in its own page to be
consistent with Providers and adding some clarity to the child pages to
surface them and make them easier to navigate
3. Updated sphinx config to not collapse navigation by default
4. Updated copyright year to be calculated dynamically 
5. Moved `docs/source/distributions/index.md` ->
`docs/source/distributions/starting_llama_stack_server.md`

Another for https://github.com/meta-llama/llama-stack/issues/1815

## Test Plan
Tested locally and pages build (screen shots for example).

## Documentation
###  Before:
![Screenshot 2025-03-31 at 1 09
21 PM](https://github.com/user-attachments/assets/98e34f76-f0d9-4055-8e2c-441b1e7d8f6a)

### After:
![Screenshot 2025-03-31 at 1 08
52 PM](https://github.com/user-attachments/assets/dfb6b8ad-3a1d-46b6-8f54-0c553664093f)

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-03-31 13:08:05 -07:00
Ihar Hrachyshka
18bac27d4e
fix: Use CONDA_DEFAULT_ENV presence as a flag to use conda mode (#1555)
# What does this PR do?

This is the second attempt to switch to system packages by default. Now
with a hack to detect conda environment - in which case conda image-type
is used.

Note: Conda will only be used when --image-name is unset *and*
CONDA_DEFAULT_ENV is set. This means that users without conda will
correctly fall back to using system packages when no --image-* arguments
are passed at all.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

Uses virtualenv:

```
$ llama stack build --template ollama --image-type venv
$ llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Using virtual environment: /home/ec2-user/src/llama-stack/schedule/.local
[...]
```

Uses system packages (virtualenv already initialized):

```
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
INFO     2025-03-27 20:46:22,882 llama_stack.cli.stack.run:142 server: No image type or image name provided. Assuming environment packages.
[...]
```

Attempt to run from environment packages without necessary packages
installed:
```
$ python -m venv barebones
$ . ./barebones/bin/activate
$ pip install -e . # to install llama command
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
ModuleNotFoundError: No module named 'fastapi'
```

^ failed as expected because the environment doesn't have necessary
packages installed.

Now install some packages in the new environment:

```
$ pip install fastapi opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp aiosqlite ollama openai datasets faiss-cpu mcp autoevals
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
```

Now see if setting CONDA_DEFAULT_ENV will change what happens by
default:

```
$ export CONDA_DEFAULT_ENV=base
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Using conda environment: base
Conda environment base does not exist.
[...]
```

---------

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-03-27 17:13:22 -04:00
Xi Yan
b5c27f77ad
chore: clean up distro doc (#1804)
# What does this PR do?
- hide distro doc (docker needs to be thoroughly tested). 

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
- docs

[//]: # (## Documentation)
2025-03-27 12:12:14 -07:00
Dmitry Rogozhkin
935e706b15
docs: fix remote-vllm instructions (#1805)
# What does this PR do?

* Fix location of `run.yaml` relative to the cloned llama stack
repository
* Drop `-it` from `docker run` commands as its not needed running
services

## Test Plan

* Verified running the llama stack following updated instruction

CC: @ashwinb

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2025-03-27 10:19:51 -04:00
Rashmi Pawar
1a73f8305b
feat: Add nemo customizer (#1448)
# What does this PR do?

This PR adds support for NVIDIA's NeMo Customizer API to the Llama Stack
post-training module. The integration enables users to fine-tune models
using NVIDIA's cloud-based customization service through a consistent
Llama Stack interface.


[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
Yet to be done

Things pending under this PR:

- [x] Integration of fine-tuned model(new checkpoint) for inference with
nvidia llm distribution
- [x] distribution integration of API
- [x] Add test cases for customizer(In Progress)
- [x] Documentation

```

LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/post_training/test_supervised_fine_tuning.py 

============================================================================================================================================================================ test session starts =============================================================================================================================================================================
platform linux -- Python 3.10.0, pytest-8.3.4, pluggy-1.5.0 -- /home/ubuntu/llama-stack/.venv/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.0', 'Platform': 'Linux-6.8.0-1021-gcp-x86_64-with-glibc2.35', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'nbval': '0.11.0', 'metadata': '3.1.1', 'anyio': '4.8.0', 'html': '4.1.1', 'asyncio': '0.25.3'}}
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: nbval-0.11.0, metadata-3.1.1, anyio-4.8.0, html-4.1.1, asyncio-0.25.3
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 2 items                                                                                                                                                                                                                                                                                                                                                            

tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_post_training_provider_registration[txt=8B] PASSED                                                                                                                                                                                                                                                 [ 50%]
tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_list_training_jobs[txt=8B] PASSED                                                                                                                                                                                                                                                                  [100%]

======================================================================================================================================================================== 2 passed, 1 warning in 0.10s ========================================================================================================================================================================
```
cc: @mattf @dglogo @sumitb

---------

Co-authored-by: Ubuntu <ubuntu@llama-stack-customizer-dev-inst-2tx95fyisatvlic4we8hidx5tfj.us-central1-a.c.brevdevprod.internal>
2025-03-25 11:01:10 -07:00
Yuan Tang
9ff82036f7
docs: Simplify vLLM deployment in K8s deployment guide (#1655)
# What does this PR do?

* Removes the use of `huggingface-cli` 
* Simplifies HF cache mount path
* Simplifies vLLM server startup command
* Separates PVC/secret creation from deployment/service
* Fixes a typo: "pod" should be "deployment"

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-03-24 09:08:50 -07:00
Hardik Shah
127bac6869
fix: Default to port 8321 everywhere (#1734)
As titled, moved all instances of 5001 to 8321
2025-03-20 15:50:41 -07:00
Hardik Shah
581e8ae562
fix: docker run with --pull always to fetch the latest image (#1733)
As titled
2025-03-20 15:35:48 -07:00
Yuan Tang
f5a5c5d459
docs: Add instruction on enabling tool calling for remote vLLM (#1719)
# What does this PR do?

This PR adds a link to tool calling instructions in vLLM. Users have
asked about this many times, e.g.
https://github.com/meta-llama/llama-stack/issues/1648#issuecomment-2740642077

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-03-20 15:18:17 -07:00
Nathan Weinberg
1261bc93bf
docs: fixed broken tip in distro build docs (#1673)
# What does this PR do?
fixed broken tip in distro build docs

## Test Plan
Local docs build

Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
2025-03-17 17:22:26 -07:00
cdgamarose-nv
252a487085
feat: added nvidia as safety provider (#1248)
# What does this PR do?
Adds nvidia as a safety provider by interfacing with the nemo guardrails
microservice.
This enables checking user’s input or the LLM’s output against input and
output guardrails by using the `/v1/guardrails/checks` endpoint of the[
guardrails
API.](https://developer.nvidia.com/docs/nemo-microservices/guardrails/source/guides/checks-guide.html)

## Test Plan
Deploy nemo guardrails service following the documentation:
https://developer.nvidia.com/docs/nemo-microservices/guardrails/source/getting-started/deploy-docker.html

### Standalone:
```bash
(venv) local-cdgamarose@a1u1g-rome-0153:~/llama-stack$ pytest -v -s llama_stack/providers/tests/safety/test_safety.py --providers inference=nvidia,safety=nvidia --safety-shield meta/llama-3.1-8b-instruct

=================================================================================== test session starts ===================================================================================
platform linux -- Python 3.10.12, pytest-8.3.4, pluggy-1.5.0 -- /localhome/local-cdgamarose/llama-stack/venv/bin/python3
cachedir: .pytest_cache
metadata: {'Python': '3.10.12', 'Platform': 'Linux-5.15.0-122-generic-x86_64-with-glibc2.35', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0', 'html': '4.1.1'}}
rootdir: /localhome/local-cdgamarose/llama-stack
configfile: pyproject.toml
plugins: metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0, html-4.1.1
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 2 items

llama_stack/providers/tests/safety/test_safety.py::TestSafety::test_shield_list[--inference=nvidia:safety=nvidia] Initializing NVIDIASafetyAdapter(http://0.0.0.0:7331)...
PASSED
llama_stack/providers/tests/safety/test_safety.py::TestSafety::test_run_shield[--inference=nvidia:safety=nvidia] PASSED

============================================================================== 2 passed, 2 warnings in 4.78s ==============================================================================

```
### Distribution:
```
llama stack run llama_stack/templates/nvidia/run-with-safety.yaml
curl -v -X 'POST' "http://localhost:8321/v1/safety/run-shield" -H 'accept: application/json' -H 'Content-Type: application/json' -d '{"shield_id": "meta/llama-3.1-8b-instruct", "messages":[{"role": "user", "content": "you are stupid"}]}'
{"violation":{"violation_level":"error","user_message":"Sorry I cannot do this.","metadata":{"self check input":{"status":"blocked"}}}}
```

[//]: # (## Documentation)

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-03-17 14:39:23 -07:00