When registering a MCP endpoint, we cannot list tools (like we used to)
since the MCP endpoint may be behind an auth wall. Registration can
happen much sooner (via run.yaml).
Instead, we do listing only when the _user_ actually calls listing.
Furthermore, we cache the list in-memory in the server. Currently, the
cache is not invalidated -- we may want to periodically re-list for MCP
servers. Note that they must call `list_tools` before calling
`invoke_tool` -- we use this critically.
This will enable us to list MCP servers in run.yaml
## Test Plan
Existing tests, updated tests accordingly.
The most interesting MCP servers are those with an authorization wall in
front of them. This PR uses the existing `provider_data` mechanism of
passing provider API keys for passing MCP access tokens (in fact,
arbitrary headers in the style of the OpenAI Responses API) from the
client through to the MCP server.
```
class MCPProviderDataValidator(BaseModel):
# mcp_endpoint => list of headers to send
mcp_headers: dict[str, list[str]] | None = None
```
Note how we must stuff the headers for all MCP endpoints into a single
"MCPProviderDataValidator". Unlike existing providers (e.g., Together
and Fireworks for inference) where we could name the provider api keys
clearly (`together_api_key`, `fireworks_api_key`), we cannot name these
keys for MCP. We have a single generic MCP provider which can serve
multiple "toolgroups". So we use a dict to combine all the headers for
all MCP endpoints you may want to use in an agentic call.
## Test Plan
See the added integration test for usage.
# What does this PR do?
## Test Plan
LLAMA_STACK_CONFIG=http://localhost:8321 pytest
tests/integration/tool_runtime/test_rag_tool.py --embedding-model
text-embedding-3-small
# What does this PR do?
his PR allows users to customize the template used for chunks when
inserted into the context. Additionally, this enables metadata injection
into the context of an LLM for RAG. This makes a naive and crude
assumption that each chunk should include the metadata, this is
obviously redundant when multiple chunks are returned from the same
document. In order to remove any sort of duplication of chunks, we'd
have to make much more significant changes so this is a reasonable first
step that unblocks users requesting this enhancement in
https://github.com/meta-llama/llama-stack/issues/1767.
In the future, this can be extended to support citations.
List of Changes:
- `llama_stack/apis/tools/rag_tool.py`
- Added `chunk_template` field in `RAGQueryConfig`.
- Added `field_validator` to validate the `chunk_template` field in
`RAGQueryConfig`.
- Ensured the `chunk_template` field includes placeholders `{index}` and
`{chunk.content}`.
- Updated the `query` method to use the `chunk_template` for formatting
chunk text content.
- `llama_stack/providers/inline/tool_runtime/rag/memory.py`
- Modified the `insert` method to pass `doc.metadata` for chunk
creation.
- Enhanced the `query` method to format results using `chunk_template`
and exclude unnecessary metadata fields like `token_count`.
- `llama_stack/providers/utils/memory/vector_store.py`
- Updated `make_overlapped_chunks` to include metadata serialization and
token count for both content and metadata.
- Added error handling for metadata serialization issues.
- `pyproject.toml`
- Added `pydantic.field_validator` as a recognized `classmethod`
decorator in the linting configuration.
- `tests/integration/tool_runtime/test_rag_tool.py`
- Refactored test assertions to separate `assert_valid_chunk_response`
and `assert_valid_text_response`.
- Added integration tests to validate `chunk_template` functionality
with and without metadata inclusion.
- Included a test case to ensure `chunk_template` validation errors are
raised appropriately.
- `tests/unit/rag/test_vector_store.py`
- Added unit tests for `make_overlapped_chunks`, verifying chunk
creation with overlapping tokens and metadata integrity.
- Added tests to handle metadata serialization errors, ensuring proper
exception handling.
- `docs/_static/llama-stack-spec.html`
- Added a new `chunk_template` field of type `string` with a default
template for formatting retrieved chunks in RAGQueryConfig.
- Updated the `required` fields to include `chunk_template`.
- `docs/_static/llama-stack-spec.yaml`
- Introduced `chunk_template` field with a default value for
RAGQueryConfig.
- Updated the required configuration list to include `chunk_template`.
- `docs/source/building_applications/rag.md`
- Documented the `chunk_template` configuration, explaining how to
customize metadata formatting in RAG queries.
- Added examples demonstrating the usage of the `chunk_template` field
in RAG tool queries.
- Highlighted default values for `RAG` agent configurations.
# Resolves https://github.com/meta-llama/llama-stack/issues/1767
## Test Plan
Updated both `test_vector_store.py` and `test_rag_tool.py` and tested
end-to-end with a script.
I also tested the quickstart to enable this and specified this metadata:
```python
document = RAGDocument(
document_id="document_1",
content=source,
mime_type="text/html",
metadata={"author": "Paul Graham", "title": "How to do great work"},
)
```
Which produced the output below:

This highlights the usefulness of the additional metadata. Notice how
the metadata is redundant for different chunks of the same document. I
think we can update that in a subsequent PR.
# Documentation
I've added a brief comment about this in the documentation to outline
this to users and updated the API documentation.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
Fixes issue #1537 that causes "500 Internal Server Error" when
unregistering a toolgroup
# (Closes#1537 )
## Test Plan
```console
$ pytest -s -v tests/integration/tool_runtime/test_registration.py --stack-config=ollama --env INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
INFO 2025-03-14 21:15:03,999 tests.integration.conftest:41 tests: Setting DISABLE_CODE_SANDBOX=1 for macOS
/opt/homebrew/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"
warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
===================================================== test session starts =====================================================
platform darwin -- Python 3.10.16, pytest-8.3.5, pluggy-1.5.0 -- /opt/homebrew/opt/python@3.10/bin/python3.10
cachedir: .pytest_cache
rootdir: /Users/paolo/Projects/aiplatform/llama-stack
configfile: pyproject.toml
plugins: asyncio-0.25.3, anyio-4.8.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 1 item
tests/integration/tool_runtime/test_registration.py::test_register_and_unregister_toolgroup[None-None-None-None-None] INFO 2025-03-14 21:15:04,478 llama_stack.providers.remote.inference.ollama.ollama:75 inference: checking
connectivity to Ollama at `http://localhost:11434`...
INFO 2025-03-14 21:15:05,350 llama_stack.providers.remote.inference.ollama.ollama:294 inference: Pulling embedding
model `all-minilm:latest` if necessary...
INFO: Started server process [78391]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
INFO: 127.0.0.1:57424 - "GET /sse HTTP/1.1" 200 OK
INFO: 127.0.0.1:57434 - "GET /sse HTTP/1.1" 200 OK
INFO 2025-03-14 21:15:16,129 mcp.client.sse:51 uncategorized: Connecting to SSE endpoint: http://localhost:8000/sse
INFO: 127.0.0.1:57445 - "GET /sse HTTP/1.1" 200 OK
INFO 2025-03-14 21:15:16,146 mcp.client.sse:71 uncategorized: Received endpoint URL:
http://localhost:8000/messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b
INFO 2025-03-14 21:15:16,147 mcp.client.sse:140 uncategorized: Starting post writer with endpoint URL:
http://localhost:8000/messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b
INFO: 127.0.0.1:57447 - "POST /messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b HTTP/1.1" 202 Accepted
INFO: 127.0.0.1:57447 - "POST /messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b HTTP/1.1" 202 Accepted
INFO: 127.0.0.1:57447 - "POST /messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b HTTP/1.1" 202 Accepted
INFO 2025-03-14 21:15:16,155 mcp.server.lowlevel.server:535 uncategorized: Processing request of type
ListToolsRequest
PASSED
=============================================== 1 passed, 4 warnings in 12.17s ================================================
```
---------
Signed-off-by: Paolo Dettori <dettori@us.ibm.com>
All of the tests from `llama_stack/providers/tests/` are now moved to
`tests/integration`.
I converted the `tools`, `scoring` and `datasetio` tests to use API.
However, `eval` and `post_training` proved to be a bit challenging to
leaving those. I think `post_training` should be relatively
straightforward also.
As part of this, I noticed that `wolfram_alpha` tool wasn't added to
some of our commonly used distros so I added it. I am going to remove a
lot of code duplication from distros next so while this looks like a
one-off right now, it will go away and be there uniformly for all
distros.