Original telemetry outputs for agent turns look like this.
Note: how output was a `str(message)` making it difficult to read them
back for downstream tasks ( eg. building eval datasets )
```
{
│ │ 'input': [
│ │ │ '{"role":"system","content":"You are a helpful assistant. Use search tool to answer the questions. "}',
│ │ │ '{"role":"user","content":"Which teams played in the NBA western conference finals of 2024","context":null}'
│ │ ],
│ │ 'output': "content: tool_calls: [ToolCall(call_id='8b7294ec-a83f-4798-ad8f-6bed662f08b6', tool_name=<BuiltinTool.brave_search: 'brave_search'>, arguments={'query': 'NBA Western Conference Finals 2024 teams'})]"
│ },
```
Updated the outputs to be structured .
## Test
```python
import uuid
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
model_id = "meta-llama/Llama-3.1-8B-Instruct"
agent_config = AgentConfig(
model=model_id,
instructions="You are a helpful assistant who will use the web search tools to help with answering questions.\nOnly provide final answer in short without writing full sentences. Use web search",
toolgroups=["builtin::websearch"],
enable_session_persistence=True,
)
agent = Agent(client, agent_config)
session_id = agent.create_session(uuid.uuid4().hex)
response = agent.create_turn(
messages=[
{
"role": "user",
"content": "latest news about llama stack",
}
],
session_id=session_id,
stream=False,
)
pprint(response)
```
Output:
```
Turn(
│ input_messages=[UserMessage(content='latest news about llama stack', role='user', context=None)],
│ output_message=CompletionMessage(
│ │ content="The latest news about Llama Stack is that Meta has released Llama 3.2, which includes small and medium-sized vision LLMs (11B and 90B) and lightweight, text-only models (1B and 3B) that fit onto select edge and mobile devices. Additionally, Llama Stack distributions have been released to simplify the way developers work with Llama models in different environments. However, a critical vulnerability has been discovered in Meta's Llama-Stack, which puts AI applications at risk.",
│ │ role='assistant',
│ │ stop_reason='end_of_turn',
│ │ tool_calls=[]
│ ),
│ session_id='77379546-4598-485a-b4f4-84e5da28c513',
│ started_at=datetime.datetime(2025, 2, 27, 11, 2, 43, 915243, tzinfo=TzInfo(-08:00)),
│ steps=[
│ │ InferenceStep(
│ │ │ api_model_response=CompletionMessage(
│ │ │ │ content='',
│ │ │ │ role='assistant',
│ │ │ │ stop_reason='end_of_turn',
│ │ │ │ tool_calls=[
│ │ │ │ │ ToolCall(
│ │ │ │ │ │ arguments={'query': 'latest news llama stack'},
│ │ │ │ │ │ call_id='84c0fa10-e24a-4f91-a9ff-415a9ec0bb0b',
│ │ │ │ │ │ tool_name='brave_search'
│ │ │ │ │ )
│ │ │ │ ]
│ │ │ ),
│ │ │ step_id='81c16bd3-eb00-4721-8edc-f386e07391a3',
│ │ │ step_type='inference',
│ │ │ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45',
│ │ │ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 44, 637149, tzinfo=TzInfo(-08:00)),
│ │ │ started_at=datetime.datetime(2025, 2, 27, 11, 2, 43, 915831, tzinfo=TzInfo(-08:00))
│ │ ),
│ │ ToolExecutionStep(
│ │ │ step_id='4782d609-a62e-45f5-8d2a-25a43db46288',
│ │ │ step_type='tool_execution',
│ │ │ tool_calls=[
│ │ │ │ ToolCall(
│ │ │ │ │ arguments={'query': 'latest news llama stack'},
│ │ │ │ │ call_id='84c0fa10-e24a-4f91-a9ff-415a9ec0bb0b',
│ │ │ │ │ tool_name='brave_search'
│ │ │ │ )
│ │ │ ],
│ │ │ tool_responses=[
│ │ │ │ ToolResponse(
│ │ │ │ │ call_id='84c0fa10-e24a-4f91-a9ff-415a9ec0bb0b',
│ │ │ │ │ content='{"query": "latest news llama stack", "top_k": [{"title": "Llama 3.2: Revol. ....... Hacker News.", "score": 0.6186197, "raw_content": null}]}',
│ │ │ │ │ tool_name='brave_search',
│ │ │ │ │ metadata=None
│ │ │ │ )
│ │ │ ],
│ │ │ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45',
│ │ │ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 46, 272176, tzinfo=TzInfo(-08:00)),
│ │ │ started_at=datetime.datetime(2025, 2, 27, 11, 2, 44, 640743, tzinfo=TzInfo(-08:00))
│ │ ),
│ │ InferenceStep(
│ │ │ api_model_response=CompletionMessage(
│ │ │ │ content="The latest news about Llama Stack is that Meta has released Llama 3.2, which includes small and medium-sized vision LLMs (11B and 90B) and lightweight, text-only models (1B and 3B) that fit onto select edge and mobile devices. Additionally, Llama Stack distributions have been released to simplify the way developers work with Llama models in different environments. However, a critical vulnerability has been discovered in Meta's Llama-Stack, which puts AI applications at risk.",
│ │ │ │ role='assistant',
│ │ │ │ stop_reason='end_of_turn',
│ │ │ │ tool_calls=[]
│ │ │ ),
│ │ │ step_id='37994419-5da3-4e84-a010-8d9b85366262',
│ │ │ step_type='inference',
│ │ │ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45',
│ │ │ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 48, 961275, tzinfo=TzInfo(-08:00)),
│ │ │ started_at=datetime.datetime(2025, 2, 27, 11, 2, 46, 273168, tzinfo=TzInfo(-08:00))
│ │ )
│ ],
│ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45',
│ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 48, 962318, tzinfo=TzInfo(-08:00)),
│ output_attachments=[]
)
```
## Check for Telemetry
```python
agent_logs = []
for span in client.telemetry.query_spans(
attribute_filters=[
{"key": "session_id", "op": "eq", "value": session_id},
],
attributes_to_return=['input', 'output'],
):
agent_logs.append(span.attributes)
pprint(json.loads(agent_logs[-1]['output']))
```
```
{
│ 'content': "The latest news about Llama Stack is that Meta has released Llama 3.2, which includes small and medium-sized vision LLMs (11B and 90B) and lightweight, text-only models (1B and 3B) that fit onto select edge and mobile devices. Additionally, Llama Stack distributions have been released to simplify the way developers work with Llama models in different environments. However, a critical vulnerability has been discovered in Meta's Llama-Stack, which puts AI applications at risk.",
│ 'tool_calls': []
}
```
# Summary:
Right now we would include toolgroup args when we encode messages with
tool_calls, which is confusing the model since they not in the function
description (see test plan for example).
# Test Plan:
Add a print statement before raw prompt is sent to providers (no good
way to test this currently)
Before:
```
cated in the same neighborhood?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n[knowledge_search(query="Laleli Mosque and Esma Sultan Mansion same neighborhood", vector_db_ids=["829a68735d744dc3830409dcc782964a"])]<|eot_id|><|start_header_id|>ipython<|end_header_id|>\n\nknowledge_search tool found 5 chunks:\nBEGIN of
```
Note the extra `vector_db_ids`
After
```
>user<|end_header_id|>\n\nAre the Laleli Mosque and Esma Sultan Mansion located in the same neighborhood?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n[knowledge_search(query="Laleli Mosque and Esma Sultan Mansion same neighborhood")]<|eot_id|><|start_header_id|>ipython<|end_header_id|>\n\nknowledge_search tool found
```
Summary:
Lets the model decide which tool it needs to call to respond to a query.
Test Plan:
```
LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/ --safety-shield meta-llama/Llama-Guard-3-8B
```
Also evaluated on a small benchmark with 20 questions from HotpotQA.
With this PR and some prompting, the performance is 77% recall compared
to 50% currently.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with
[ReviewStack](https://reviewstack.dev/meta-llama/llama-stack/pull/1015).
* #1268
* #1239
* __->__ #1015
# What does this PR do?
This PR makes a couple of changes required to get the test
`tests/client-sdk/agents/test_agents.py::test_builtin_tool_web_search`
passing on the remote-vllm provider.
First, we adjust agent_instance to also pass in the description and
parameters of builtin tools. We need these parameters so we can pass the
tool's expected parameters into vLLM. The meta-reference implementations
may not have needed these for builtin tools, as they are able to take
advantage of the Llama-model specific support for certain builtin tools.
However, with vLLM, our server-side chat templates for tool calling
treat all tools the same and don't separate out Llama builtin vs custom
tools. So, we need to pass the full set of parameter definitions and
list of required parameters for builtin tools as well.
Next, we adjust the vllm streaming chat completion code to fix up some
edge cases where it was returning an extra ChatCompletionResponseEvent
with an empty ToolCall with empty string call_id, tool_name, and
arguments properties. This is a bug discovered after the above fix,
where after a successful tool invocation we were sending extra chunks
back to the client with these empty ToolCalls.
## Test Plan
With these changes, the following test that previously failed now
passes:
```
VLLM_URL="http://localhost:8000/v1" \
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
LLAMA_STACK_CONFIG=remote-vllm \
python -m pytest -v \
tests/client-sdk/agents/test_agents.py::test_builtin_tool_web_search \
--inference-model "meta-llama/Llama-3.2-3B-Instruct"
```
Additionally, I ran the remote-vllm client-sdk and provider inference
tests as below to ensure they all still passed with this change:
```
VLLM_URL="http://localhost:8000/v1" \
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
LLAMA_STACK_CONFIG=remote-vllm \
python -m pytest -v \
tests/client-sdk/inference/test_text_inference.py \
--inference-model "meta-llama/Llama-3.2-3B-Instruct"
```
```
VLLM_URL="http://localhost:8000/v1" \
python -m pytest -s -v \
llama_stack/providers/tests/inference/test_text_inference.py \
--providers "inference=vllm_remote"
```
[//]: # (## Documentation)
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
When there are issues with the tool call function, an exception is
raised but the error message is not informative. This adds a clearer
message to tell users to check their functions.
```
Traceback (most recent call last):
File "/Users/phayes/projects/llama-stack/llama-stack/llama_stack/distribution/server/server.py", line 208, in sse_generator
async for item in event_gen:
File "/Users/phayes/projects/llama-stack/llama-stack/llama_stack/providers/inline/agents/meta_reference/agents.py", line 165, in _create_agent_turn_streaming
async for event in agent.create_and_execute_turn(request):
File "/Users/phayes/projects/llama-stack/llama-stack/llama_stack/providers/inline/agents/meta_reference/agent_instance.py", line 197, in create_and_execute_turn
async for chunk in self.run(
File "/Users/phayes/projects/llama-stack/llama-stack/llama_stack/providers/inline/agents/meta_reference/agent_instance.py", line 389, in run
async for res in self._run(
File "/Users/phayes/projects/llama-stack/llama-stack/llama_stack/providers/inline/agents/meta_reference/agent_instance.py", line 811, in _run
content=tool_result.content,
AttributeError: 'NoneType' object has no attribute 'content'
```
## Test Plan
Ran the same script and exception is raised with clearer error message.
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
Summary:
kotlin SDK expects this format
Test Plan:
python prints the expected format
>>> str(datetime.now().astimezone())
'2025-02-24 22:02:58.729763-08:00'
Summary:
Allows tools to output metadata. This is useful for evaluating tool
outputs, e.g. RAG tool will output document IDs, which can be used to
score recall.
Will need to make a similar change on the client side to support
ClientTool outputting metadata.
Test Plan:
LLAMA_STACK_CONFIG=fireworks pytest -s -v
tests/client-sdk/agents/test_agents.py
# Problem
Our current Agent framework has discrepancies in definition on how we
handle server side and client side tools.
1. Server Tools: a single Turn is returned including `ToolExecutionStep`
in agenst
2. Client Tools: `create_agent_turn` is called in loop with client agent
lib yielding the agent chunk
ad6ffc63df/src/llama_stack_client/lib/agents/agent.py (L186-L211)
This makes it inconsistent to work with server & client tools. It also
complicates the logs to telemetry to get information about agents turn /
history for observability.
#### Principle
The same `turn_id` should be used to represent the steps required to
complete a user message including client tools.
## Solution
1. `AgentTurnResponseEventType.turn_awaiting_input` status to indicate
that the current turn is not completed, and awaiting tool input
2. `continue_agent_turn` endpoint to update agent turn with client's
tool response.
# What does this PR do?
- Skeleton API as example
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
- Just API update, no functionality change
```
llama stack run + client-sdk test
```
<img width="842" alt="image"
src="https://github.com/user-attachments/assets/7ac56b5f-f424-4632-9476-7e0f57555bc3"
/>
[//]: # (## Documentation)
llama-models should have extremely minimal cruft. Its sole purpose
should be didactic -- show the simplest implementation of the llama
models and document the prompt formats, etc.
This PR is the complement to
https://github.com/meta-llama/llama-models/pull/279
## Test Plan
Ensure all `llama` CLI `model` sub-commands work:
```bash
llama model list
llama model download --model-id ...
llama model prompt-format -m ...
```
Ran tests:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/
LLAMA_STACK_CONFIG=fireworks pytest -s -v vector_io/
LLAMA_STACK_CONFIG=fireworks pytest -s -v agents/
```
Create a fresh venv `uv venv && source .venv/bin/activate` and run
`llama stack build --template fireworks --image-type venv` followed by
`llama stack run together --image-type venv` <-- the server runs
Also checked that the OpenAPI generator can run and there is no change
in the generated files as a result.
```bash
cd docs/openapi_generator
sh run_openapi_generator.sh
```
# What does this PR do?
- Remove hardcoded configurations from pre-commit.
- Allow configuration to be set via pyproject.toml.
- Merge .ruff.toml settings into pyproject.toml.
- Ensure the linter and formatter use the defined configuration instead
of being overridden by pre-commit.
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
- Configured ruff linter to automatically fix import sorting issues.
- Set --exit-non-zero-on-fix to ensure non-zero exit code when fixes are
applied.
- Enabled the 'I' selection to focus on import-related linting rules.
- Ran the linter, and formatted all codebase imports accordingly.
- Removed the black dep from the "dev" group since we use ruff
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
This commit enhances the signal handling mechanism in the server by
improving the `handle_signal` (previously handle_sigint) function. It
now properly retrieves the signal name, ensuring clearer logging when a
termination signal is received. Additionally, it cancels all running
tasks and waits for their completion before stopping the event loop,
allowing for a more graceful shutdown. Support for handling
SIGTERM has also been added alongside SIGINT.
Before the changes, handle_sigint used asyncio.run(run_shutdown()).
However, asyncio.run() is meant to start a new event loop, and calling
it inside an existing one (like when running Uvicorn) raises an error.
The fix replaces asyncio.run(run_shutdown()) with an async function
scheduled on the existing loop using loop.create_task(shutdown()). This
ensures that the shutdown coroutine runs within the current event loop
instead of trying to create a new one.
Furthermore, this commit updates the project dependencies. `fastapi` and
`uvicorn` have been added to the development dependencies in
`pyproject.toml` and `uv.lock`, ensuring that the necessary packages are
available for development and execution.
Closes: https://github.com/meta-llama/llama-stack/issues/1043
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
Run a server and send SIGINT:
```
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m llama_stack.distribution.server.server --yaml-config ./llama_stack/templates/ollama/run.yaml
Using config file: llama_stack/templates/ollama/run.yaml
Run configuration:
apis:
- agents
- datasetio
- eval
- inference
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
container_image: null
datasets: []
eval_tasks: []
image_name: ollama
metadata_store:
db_path: /Users/leseb/.llama/distributions/ollama/registry.db
namespace: null
type: sqlite
models:
- metadata: {}
model_id: meta-llama/Llama-3.2-3B-Instruct
model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType
- llm
provider_id: ollama
provider_model_id: null
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType
- embedding
provider_id: sentence-transformers
provider_model_id: null
providers:
agents:
- config:
persistence_store:
db_path: /Users/leseb/.llama/distributions/ollama/agents_store.db
namespace: null
type: sqlite
provider_id: meta-reference
provider_type: inline::meta-reference
datasetio:
- config: {}
provider_id: huggingface
provider_type: remote::huggingface
- config: {}
provider_id: localfs
provider_type: inline::localfs
eval:
- config: {}
provider_id: meta-reference
provider_type: inline::meta-reference
inference:
- config:
url: http://localhost:11434
provider_id: ollama
provider_type: remote::ollama
- config: {}
provider_id: sentence-transformers
provider_type: inline::sentence-transformers
safety:
- config: {}
provider_id: llama-guard
provider_type: inline::llama-guard
scoring:
- config: {}
provider_id: basic
provider_type: inline::basic
- config: {}
provider_id: llm-as-judge
provider_type: inline::llm-as-judge
- config:
openai_api_key: '********'
provider_id: braintrust
provider_type: inline::braintrust
telemetry:
- config:
service_name: llama-stack
sinks: console,sqlite
sqlite_db_path: /Users/leseb/.llama/distributions/ollama/trace_store.db
provider_id: meta-reference
provider_type: inline::meta-reference
tool_runtime:
- config:
api_key: '********'
max_results: 3
provider_id: brave-search
provider_type: remote::brave-search
- config:
api_key: '********'
max_results: 3
provider_id: tavily-search
provider_type: remote::tavily-search
- config: {}
provider_id: code-interpreter
provider_type: inline::code-interpreter
- config: {}
provider_id: rag-runtime
provider_type: inline::rag-runtime
vector_io:
- config:
kvstore:
db_path: /Users/leseb/.llama/distributions/ollama/faiss_store.db
namespace: null
type: sqlite
provider_id: faiss
provider_type: inline::faiss
scoring_fns: []
server:
port: 8321
tls_certfile: null
tls_keyfile: null
shields: []
tool_groups:
- args: null
mcp_endpoint: null
provider_id: tavily-search
toolgroup_id: builtin::websearch
- args: null
mcp_endpoint: null
provider_id: rag-runtime
toolgroup_id: builtin::rag
- args: null
mcp_endpoint: null
provider_id: code-interpreter
toolgroup_id: builtin::code_interpreter
vector_dbs: []
version: '2'
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:213: Resolved 31 providers
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-inference => ollama
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-inference => sentence-transformers
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: models => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inference => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-vector_io => faiss
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-safety => llama-guard
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: shields => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: safety => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: vector_dbs => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: vector_io => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-tool_runtime => brave-search
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-tool_runtime => tavily-search
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-tool_runtime => code-interpreter
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-tool_runtime => rag-runtime
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: tool_groups => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: tool_runtime => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: agents => meta-reference
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-datasetio => huggingface
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-datasetio => localfs
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: datasets => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: datasetio => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: telemetry => meta-reference
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-scoring => basic
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-scoring => llm-as-judge
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-scoring => braintrust
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: scoring_functions => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: scoring => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inner-eval => meta-reference
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: eval_tasks => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: eval => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215: inspect => __builtin__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:216:
INFO 2025-02-12 10:21:03,723 llama_stack.providers.remote.inference.ollama.ollama:148: checking connectivity to Ollama at `http://localhost:11434`...
INFO 2025-02-12 10:21:03,734 httpx:1740: HTTP Request: GET http://localhost:11434/api/ps "HTTP/1.1 200 OK"
INFO 2025-02-12 10:21:03,843 faiss.loader:148: Loading faiss.
INFO 2025-02-12 10:21:03,865 faiss.loader:150: Successfully loaded faiss.
INFO 2025-02-12 10:21:03,868 faiss:173: Failed to load GPU Faiss: name 'GpuIndexIVFFlat' is not defined. Will not load constructor refs for GPU indexes.
Warning: `bwrap` is not available. Code interpreter tool will not work correctly.
INFO 2025-02-12 10:21:04,315 datasets:54: PyTorch version 2.6.0 available.
INFO 2025-02-12 10:21:04,556 httpx:1740: HTTP Request: GET http://localhost:11434/api/ps "HTTP/1.1 200 OK"
INFO 2025-02-12 10:21:04,557 llama_stack.providers.utils.inference.embedding_mixin:42: Loading sentence transformer for all-MiniLM-L6-v2...
INFO 2025-02-12 10:21:07,202 sentence_transformers.SentenceTransformer:210: Use pytorch device_name: mps
INFO 2025-02-12 10:21:07,202 sentence_transformers.SentenceTransformer:218: Load pretrained SentenceTransformer: all-MiniLM-L6-v2
INFO 2025-02-12 10:21:09,500 llama_stack.distribution.stack:102: Models: all-MiniLM-L6-v2 served by sentence-transformers
INFO 2025-02-12 10:21:09,500 llama_stack.distribution.stack:102: Models: meta-llama/Llama-3.2-3B-Instruct served by ollama
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: basic::equality served by basic
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: basic::regex_parser_multiple_choice_answer served by basic
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: basic::subset_of served by basic
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::answer-correctness served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::answer-relevancy served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::answer-similarity served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-entity-recall served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-precision served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-recall served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-relevancy served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::factuality served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::faithfulness served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: llm-as-judge::405b-simpleqa served by llm-as-judge
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: llm-as-judge::base served by llm-as-judge
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Tool_groups: builtin::code_interpreter served by code-interpreter
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Tool_groups: builtin::rag served by rag-runtime
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Tool_groups: builtin::websearch served by tavily-search
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:106:
Serving API eval
POST /v1/eval/tasks/{task_id}/evaluations
DELETE /v1/eval/tasks/{task_id}/jobs/{job_id}
GET /v1/eval/tasks/{task_id}/jobs/{job_id}/result
GET /v1/eval/tasks/{task_id}/jobs/{job_id}
POST /v1/eval/tasks/{task_id}/jobs
Serving API agents
POST /v1/agents
POST /v1/agents/{agent_id}/session
POST /v1/agents/{agent_id}/session/{session_id}/turn
DELETE /v1/agents/{agent_id}
DELETE /v1/agents/{agent_id}/session/{session_id}
GET /v1/agents/{agent_id}/session/{session_id}
GET /v1/agents/{agent_id}/session/{session_id}/turn/{turn_id}/step/{step_id}
GET /v1/agents/{agent_id}/session/{session_id}/turn/{turn_id}
Serving API scoring_functions
GET /v1/scoring-functions/{scoring_fn_id}
GET /v1/scoring-functions
POST /v1/scoring-functions
Serving API safety
POST /v1/safety/run-shield
Serving API inspect
GET /v1/health
GET /v1/inspect/providers
GET /v1/inspect/routes
GET /v1/version
Serving API tool_runtime
POST /v1/tool-runtime/invoke
GET /v1/tool-runtime/list-tools
POST /v1/tool-runtime/rag-tool/insert
POST /v1/tool-runtime/rag-tool/query
Serving API datasetio
POST /v1/datasetio/rows
GET /v1/datasetio/rows
Serving API shields
GET /v1/shields/{identifier}
GET /v1/shields
POST /v1/shields
Serving API eval_tasks
GET /v1/eval-tasks/{eval_task_id}
GET /v1/eval-tasks
POST /v1/eval-tasks
Serving API models
GET /v1/models/{model_id}
GET /v1/models
POST /v1/models
DELETE /v1/models/{model_id}
Serving API datasets
GET /v1/datasets/{dataset_id}
GET /v1/datasets
POST /v1/datasets
DELETE /v1/datasets/{dataset_id}
Serving API vector_io
POST /v1/vector-io/insert
POST /v1/vector-io/query
Serving API inference
POST /v1/inference/chat-completion
POST /v1/inference/completion
POST /v1/inference/embeddings
Serving API tool_groups
GET /v1/tools/{tool_name}
GET /v1/toolgroups/{toolgroup_id}
GET /v1/toolgroups
GET /v1/tools
POST /v1/toolgroups
DELETE /v1/toolgroups/{toolgroup_id}
Serving API vector_dbs
GET /v1/vector-dbs/{vector_db_id}
GET /v1/vector-dbs
POST /v1/vector-dbs
DELETE /v1/vector-dbs/{vector_db_id}
Serving API scoring
POST /v1/scoring/score
POST /v1/scoring/score-batch
Serving API telemetry
GET /v1/telemetry/traces/{trace_id}/spans/{span_id}
GET /v1/telemetry/spans/{span_id}/tree
GET /v1/telemetry/traces/{trace_id}
POST /v1/telemetry/events
GET /v1/telemetry/spans
GET /v1/telemetry/traces
POST /v1/telemetry/spans/export
Listening on ['::', '0.0.0.0']:5001
INFO: Started server process [65372]
INFO: Waiting for application startup.
INFO: ASGI 'lifespan' protocol appears unsupported.
INFO: Application startup complete.
INFO: Uvicorn running on http://['::', '0.0.0.0']:5001 (Press CTRL+C to quit)
^CINFO: Shutting down
INFO: Finished server process [65372]
Received signal SIGINT (2). Exiting gracefully...
INFO 2025-02-12 10:21:11,215 __main__:151: Shutting down ModelsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down InferenceRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ShieldsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down SafetyRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down VectorDBsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down VectorIORouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ToolGroupsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ToolRuntimeRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down MetaReferenceAgentsImpl
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down DatasetsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down DatasetIORouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down TelemetryAdapter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ScoringFunctionsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ScoringRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down EvalTasksRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down EvalRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down DistributionInspectImpl
```
[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
The current default system prompt for llama3.2 tends to overindex on
tool calling and doesn't work well when the prompt does not require tool
calling.
This PR adds an option to override the default system prompt, and
organizes tool-related configs into a new config object.
- [ ] Addresses issue (#issue)
## Test Plan
LLAMA_STACK_CONFIG=together pytest
\-\-inference\-model=meta\-llama/Llama\-3\.3\-70B\-Instruct -s -v
tests/client-sdk/agents/test_agents.py::test_override_system_message_behavior
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
Lint check in main branch is failing. This fixes the lint check after we
moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We
need to move to a `ruff.toml` file as well as fixing and ignoring some
additional checks.
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
# What does this PR do?
Fixes a bug where agents were not working when both rag and
code-interpreter were added as tools.
## Test Plan
Added a new client_sdk test which tests for this scenario
```
LLAMA_STACK_CONFIG=together pytest -s -v tests/client-sdk -k 'test_rag_and_code_agent'
```
---------
Co-authored-by: Hardik Shah <hjshah@fb.com>
# What does this PR do?
Add response format for agents structured output.
- [ ] Using structured output for agents (interior_design app as an
example) (#issue)
https://github.com/meta-llama/llama-stack-apps/issues/122
## Test Plan
E2E test plan with llama-stack-apps interior_design
Please describe:
Test ran:
- provide instructions so it can be reproduced.
Start your distro:
llama stack run llama_stack/templates/fireworks/run.yaml --env
FIREWORKS_API_KEY=<API_KEY>
Run api test:
```PYTHONPATH=. python examples/interior_design_assistant/api.py localhost 5000 examples/interior_design_assistant/resources/documents/ examples/interior_design_assistant/resources/images/fireplaces```
## Sources
Results:
https://github.com/meta-llama/llama-stack-client-python/pull/72
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
Some small updates to the inference types to make them more standard
Specifically:
- image data is now located in a "image" subkey
- similarly tool call data is located in a "tool_call" subkey
The pattern followed is `dict(type="foo", foo=<...>)`
Making a few small naming changes as per feedback:
- RAGToolRuntime methods are called `insert` and `query` to keep them
more general
- The tool names are changed to non-namespaced forms
`insert_into_memory` and `query_from_memory`
- The REST endpoints are more REST-ful
See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.
Third part:
- we need to make `tool_runtime.rag_tool.query_context()` and
`tool_runtime.rag_tool.insert_documents()` methods work smoothly with
complete type safety. To that end, we introduce a sub-resource path
`tool-runtime/rag-tool/` and make changes to the resolver to make things
work.
- the PR updates the agents implementation to directly call these typed
APIs for memory accesses rather than going through the complex, untyped
"invoke_tool" API. the code looks much nicer and simpler (expectedly.)
- there are a number of hacks in the server resolver implementation
still, we will live with some and fix some
Note that we must make sure the client SDKs are able to handle this
subresource complexity also. Stainless has support for subresources, so
this should be possible but beware.
## Test Plan
Our RAG test is sad (doesn't actually test for actual RAG output) but I
verified that the implementation works. I will work on fixing the RAG
test afterwards.
```bash
pytest -s -v tests/agents/test_agents.py -k "rag and together" --safety-shield=meta-llama/Llama-Guard-3-8B
```
# What does this PR do?
This PR changes our API to follow more idiomatic REST API approaches of
having paths being resources and methods indicating the action being
performed.
Changes made to generator:
1) removed the prefix check of "get" as its not required and is actually
needed for other method types too
2) removed _ check on path since variables can have "_"
## Test Plan
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v
tests/client-sdk/agents/test_agents.py
# What does this PR do?
PR #639 introduced the notion of Tools API and ability to invoke tools
through API just as any resource. This PR changes the Agents to start
using the Tools API to invoke tools. Major changes include:
1) Ability to specify tool groups with AgentConfig
2) Agent gets the corresponding tool definitions for the specified tools
and pass along to the model
3) Attachements are now named as Documents and their behavior is mostly
unchanged from user perspective
4) You can specify args that can be injected to a tool call through
Agent config. This is especially useful in case of memory tool, where
you want the tool to operate on a specific memory bank.
5) You can also register tool groups with args, which lets the agent
inject these as well into the tool call.
6) All tests have been migrated to use new tools API and fixtures
including client SDK tests
7) Telemetry just works with tools API because of our trace protocol
decorator
## Test Plan
```
pytest -s -v -k fireworks llama_stack/providers/tests/agents/test_agents.py \
--safety-shield=meta-llama/Llama-Guard-3-8B \
--inference-model=meta-llama/Llama-3.1-8B-Instruct
pytest -s -v -k together llama_stack/providers/tests/tools/test_tools.py \
--safety-shield=meta-llama/Llama-Guard-3-8B \
--inference-model=meta-llama/Llama-3.1-8B-Instruct
LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml" pytest -v tests/client-sdk/agents/test_agents.py
```
run.yaml:
https://gist.github.com/dineshyv/0365845ad325e1c2cab755788ccc5994
Notebook:
https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d?usp=sharing
# What does this PR do?
Contributes to issue (#407)
tl;dr - @subramen was getting a 500 error because llama-stack called
code_interpreter when it never was defined as a tool.
Prevents failures like:
<img width="544" alt="image"
src="https://github.com/user-attachments/assets/392683d2-4670-414c-aaba-07ebc006d748"
/>
```
# Server side
Traceback (most recent call last):
File "/opt/conda/envs/llamastack-vllm-stack/lib/python3.10/site-packages/llama_stack/distribution/server/server.py", line 206, in sse_generator
async for item in await event_gen:
File "/opt/conda/envs/llamastack-vllm-stack/lib/python3.10/site-packages/llama_stack/providers/impls/meta_reference/agents/agents.py", line 138, in _create_agent_turn_streaming
async for event in agent.create_and_execute_turn(request):
File "/opt/conda/envs/llamastack-vllm-stack/lib/python3.10/site-packages/llama_stack/providers/impls/meta_reference/agents/agent_instance.py", line 179, in create_and_execute_turn
async for chunk in self.run(
File "/opt/conda/envs/llamastack-vllm-stack/lib/python3.10/site-packages/llama_stack/providers/impls/meta_reference/agents/agent_instance.py", line 252, in run
async for res in self._run(
File "/opt/conda/envs/llamastack-vllm-stack/lib/python3.10/site-packages/llama_stack/providers/impls/meta_reference/agents/agent_instance.py", line 560, in _run
result_messages = await execute_tool_call_maybe(
File "/opt/conda/envs/llamastack-vllm-stack/lib/python3.10/site-packages/llama_stack/providers/impls/meta_reference/agents/agent_instance.py", line 824, in execute_tool_call_maybe
assert name in tools_dict, f"Tool {name} not found"
AssertionError: Tool code_interpreter not found
```
Instead, if the model hallucinates, we just let it hallucinate and let
the client know.
<img width="544" alt="image"
src="https://github.com/user-attachments/assets/d2418583-d45a-48db-b476-45a584f2986f"
/>
## Test Plan
<details>
<summary>pytest llama_stack/providers/tests/agents/test_agents.py -k
ollama</summary>
```
llama stack build --template ollama --image-type conda
conda activate llamastack-ollama
```
```
llama_stack/providers/tests/agents/test_agents.py ..Fss [100%]
======================================================================= FAILURES =======================================================================
_________________________________________ TestAgents.test_rag_agent_as_attachments[--ollama][ollama] __________________________________________
llama_stack/providers/tests/agents/test_agents.py:261: in test_rag_agent_as_attachments
turn_response = [
llama_stack/providers/tests/agents/test_agents.py:261: in <listcomp>
turn_response = [
llama_stack/providers/inline/agents/meta_reference/agents.py:153: in _create_agent_turn_streaming
async for event in agent.create_and_execute_turn(request):
llama_stack/providers/inline/agents/meta_reference/agent_instance.py:179: in create_and_execute_turn
async for chunk in self.run(
llama_stack/providers/inline/agents/meta_reference/agent_instance.py:250: in run
async for res in self._run(
llama_stack/providers/inline/agents/meta_reference/agent_instance.py:363: in _run
rag_context, bank_ids = await self._retrieve_context(
llama_stack/providers/inline/agents/meta_reference/agent_instance.py:698: in _retrieve_context
bank_id = await self._ensure_memory_bank(session_id)
llama_stack/providers/inline/agents/meta_reference/agent_instance.py:653: in _ensure_memory_bank
await self.memory_banks_api.register_memory_bank(
llama_stack/providers/utils/telemetry/trace_protocol.py:101: in async_wrapper
result = await method(self, *args, **kwargs)
llama_stack/distribution/routers/routing_tables.py:312: in register_memory_bank
raise ValueError(
E ValueError: Embeddings are now served via Inference providers. Please upgrade your run.yaml to include inline::sentence-transformer as an additional inference provider. See https://github.com/meta-llama/llama-stack/blob/main/llama_stack/templates/together/run.yaml for an example.
=============================================================== short test summary info ================================================================
FAILED llama_stack/providers/tests/agents/test_agents.py::TestAgents::test_rag_agent_as_attachments[--ollama] - ValueError: Embeddings are now served via Inference providers. Please upgrade your run.yaml to include inline::sentence-transformer as an additiona...
========================================== 1 failed, 2 passed, 2 skipped, 20 deselected, 5 warnings in 14.24s ==========================================
```
Unrelated test is failing (also failing on main)
</details>
<details>
<summary>Manual</summary>
Using this client code:
7ebc257b27/client.py
<img width="544" alt="Screenshot 2024-12-16 at 17 41 31"
src="https://github.com/user-attachments/assets/7425deaf-c94a-4dda-a635-922728e373f1"
/>
</details>
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
## What does this PR do?
This is a long-pending change and particularly important to get done
now.
Specifically:
- we cannot "localize" (aka download) any URLs from media attachments
anywhere near our modeling code. it must be done within llama-stack.
- `PIL.Image` is infesting all our APIs via `ImageMedia ->
InterleavedTextMedia` and that cannot be right at all. Anything in the
API surface must be "naturally serializable". We need a standard `{
type: "image", image_url: "<...>" }` which is more extensible
- `UserMessage`, `SystemMessage`, etc. are moved completely to
llama-stack from the llama-models repository.
See https://github.com/meta-llama/llama-models/pull/244 for the
corresponding PR in llama-models.
## Test Plan
```bash
cd llama_stack/providers/tests
pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py
pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py
pytest -s -v -k chroma memory/test_memory.py \
--env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar
pytest -s -v -k fireworks agents/test_agents.py \
--safety-shield=meta-llama/Llama-Guard-3-8B \
--inference-model=meta-llama/Llama-3.1-8B-Instruct
```
Updated the client sdk (see PR ...), installed the SDK in the same
environment and then ran the SDK tests:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py
LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py
# this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly
INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py
```
# What does this PR do?
**Why**
- When AgentConfig has no `input_shields` / `output_shields` defined, we
still outputs a shield_call step with violation=None. This is impossible
to distinguish the case b/w (1) no violation from running shields v.s.
(2) no shields call
**What**
- We should not have a shield_call step when no `input_shields` /
`output_shields` are defined.
- Also removes a never reached try/catch code block in agent loop.
`run_multiple_shields` is never called in the try block (verified by
stacktrace print)
**Side Note**
- pre-commit fix
## Test Plan
Tested w/ DirectClient via:
https://gist.github.com/yanxi0830/b48f2a53b6f5391b9ff1e39992bc05b3
**No Shields**
<img width="858" alt="image"
src="https://github.com/user-attachments/assets/67319370-329f-4954-bd16-d21ce54c6ebf"
/>
**With Input + Output Shields**
<img width="854" alt="image"
src="https://github.com/user-attachments/assets/75ab1bee-3ba9-4549-ab51-23210be83da7"
/>
**Input Shields Only**
<img width="858" alt="image"
src="https://github.com/user-attachments/assets/1897206b-13dd-4ea5-92c2-b39bf68e9286"
/>
E2E pytest
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk/agents/test_agents.py
```
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
Library client used _server_ side types which was no bueno. The fix here
is not the completely correct fix but it is good for enough and for the
demo notebook.
This brings an interesting aspect -- we need to maintain session-level
tempdir state (!) since the model was told there was some resource at a
given location that it needs to maintain
# What does this PR do?
Change the Telemetry API to be able to support different use cases like
returning traces for the UI and ability to export for Evals.
Other changes:
* Add a new trace_protocol decorator to decorate all our API methods so
that any call to them will automatically get traced across all impls.
* There is some issue with the decorator pattern of span creation when
using async generators, where there are multiple yields with in the same
context. I think its much more explicit by using the explicit context
manager pattern using with. I moved the span creations in agent instance
to be using with
* Inject session id at the turn level, which should quickly give us all
traces across turns for a given session
Addresses #509
## Test Plan
```
llama stack run /Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml
PYTHONPATH=. python -m examples.agents.rag_with_memory_bank localhost 5000
curl -X POST 'http://localhost:5000/alpha/telemetry/query-traces' \
-H 'Content-Type: application/json' \
-d '{
"attribute_filters": [
{
"key": "session_id",
"op": "eq",
"value": "dd667b87-ca4b-4d30-9265-5a0de318fc65" }],
"limit": 100,
"offset": 0,
"order_by": ["start_time"]
}' | jq .
[
{
"trace_id": "6902f54b83b4b48be18a6f422b13e16f",
"root_span_id": "5f37b85543afc15a",
"start_time": "2024-12-04T08:08:30.501587",
"end_time": "2024-12-04T08:08:36.026463"
},
{
"trace_id": "92227dac84c0615ed741be393813fb5f",
"root_span_id": "af7c5bb46665c2c8",
"start_time": "2024-12-04T08:08:36.031170",
"end_time": "2024-12-04T08:08:41.693301"
},
{
"trace_id": "7d578a6edac62f204ab479fba82f77b6",
"root_span_id": "1d935e3362676896",
"start_time": "2024-12-04T08:08:41.695204",
"end_time": "2024-12-04T08:08:47.228016"
},
{
"trace_id": "dbd767d76991bc816f9f078907dc9ff2",
"root_span_id": "f5a7ee76683b9602",
"start_time": "2024-12-04T08:08:47.234578",
"end_time": "2024-12-04T08:08:53.189412"
}
]
curl -X POST 'http://localhost:5000/alpha/telemetry/get-span-tree' \
-H 'Content-Type: application/json' \
-d '{ "span_id" : "6cceb4b48a156913", "max_depth": 2, "attributes_to_return": ["input"] }' | jq .
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 875 100 790 100 85 18462 1986 --:--:-- --:--:-- --:--:-- 20833
{
"span_id": "6cceb4b48a156913",
"trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
"parent_span_id": "892a66d726c7f990",
"name": "retrieve_rag_context",
"start_time": "2024-12-04T09:28:21.781995",
"end_time": "2024-12-04T09:28:21.913352",
"attributes": {
"input": [
"{\"role\":\"system\",\"content\":\"You are a helpful assistant\"}",
"{\"role\":\"user\",\"content\":\"What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.\",\"context\":null}"
]
},
"children": [
{
"span_id": "1a2df181854064a8",
"trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
"parent_span_id": "6cceb4b48a156913",
"name": "MemoryRouter.query_documents",
"start_time": "2024-12-04T09:28:21.787620",
"end_time": "2024-12-04T09:28:21.906512",
"attributes": {
"input": null
},
"children": [],
"status": "ok"
}
],
"status": "ok"
}
```
<img width="1677" alt="Screenshot 2024-12-04 at 9 42 56 AM"
src="https://github.com/user-attachments/assets/4d3cea93-05ce-415a-93d9-4b1628631bf8">
# What does this PR do?
This PR fixes some of the issues with our telemetry setup to enable logs
to be delivered to opentelemetry and jaeger. Main fixes
1) Updates the open telemetry provider to use the latest oltp exports
instead of deprected ones.
2) Adds a tracing middleware, which injects traces into each HTTP
request that the server recieves and this is going to be the root trace.
Previously, we did this in the create_dynamic_route method, which is
actually not the actual exectuion flow, but more of a config and this
causes the traces to end prematurely. Through middleware, we plugin the
trace start and end at the right location.
3) We manage our own methods to create traces and spans and this does
not fit well with Opentelemetry SDK since it does not support provide a
way to take in traces and spans that are already created. it expects us
to use the SDK to create them. For now, I have a hacky approach of just
maintaining a map from our internal telemetry objects to the open
telemetry specfic ones. This is not the ideal solution. I will explore
other ways to get around this issue. for now, to have something that
works, i am going to keep this as is.
Addresses: #509