This PR adds a method in stack to return the stackrunconfig object based
on the template name. This will be used to instantiate a direct client
without the need for an explicit run.yaml
---------
Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
# What does this PR do?
Automatically generates
- build.yaml
- run.yaml
- run-with-safety.yaml
- parts of markdown docs
for the distributions.
## Test Plan
At this point, this only updates the YAMLs and the docs. Some testing
(especially with ollama and vllm) has been performed but needs to be
much more tested.
# What does this PR do?
We'd like our docker steps to require _ZERO EDITS_ to a YAML file in
order to get going. This is often not possible because depending on the
provider, we do need some configuration input from the user. Environment
variables are the best way to obtain this information.
This PR allows our run.yaml to contain `${env.FOO_BAR}` placeholders
which can be replaced using `docker run -e FOO_BAR=baz` (and similar
`docker compose` equivalent).
## Test Plan
For remote-vllm, example `run.yaml` snippet looks like this:
```yaml
providers:
inference:
# serves main inference model
- provider_id: vllm-0
provider_type: remote::vllm
config:
# NOTE: replace with "localhost" if you are running in "host" network mode
url: ${env.LLAMA_INFERENCE_VLLM_URL:http://host.docker.internal:5100/v1}
max_tokens: ${env.MAX_TOKENS:4096}
api_token: fake
# serves safety llama_guard model
- provider_id: vllm-1
provider_type: remote::vllm
config:
# NOTE: replace with "localhost" if you are running in "host" network mode
url: ${env.LLAMA_SAFETY_VLLM_URL:http://host.docker.internal:5101/v1}
max_tokens: ${env.MAX_TOKENS:4096}
api_token: fake
```
`compose.yaml` snippet looks like this:
```yaml
llamastack:
depends_on:
- vllm-0
- vllm-1
# image: llamastack/distribution-remote-vllm
image: llamastack/distribution-remote-vllm:test-0.0.52rc3
volumes:
- ~/.llama:/root/.llama
- ~/local/llama-stack/distributions/remote-vllm/run.yaml:/root/llamastack-run-remote-vllm.yaml
# network_mode: "host"
environment:
- LLAMA_INFERENCE_VLLM_URL=${LLAMA_INFERENCE_VLLM_URL:-http://host.docker.internal:5100/v1}
- LLAMA_INFERENCE_MODEL=${LLAMA_INFERENCE_MODEL:-Llama3.1-8B-Instruct}
- MAX_TOKENS=${MAX_TOKENS:-4096}
- SQLITE_STORE_DIR=${SQLITE_STORE_DIR:-$HOME/.llama/distributions/remote-vllm}
- LLAMA_SAFETY_VLLM_URL=${LLAMA_SAFETY_VLLM_URL:-http://host.docker.internal:5101/v1}
- LLAMA_SAFETY_MODEL=${LLAMA_SAFETY_MODEL:-Llama-Guard-3-1B}
```
# What does this PR do?
This PR kills the notion of "pure passthrough" remote providers. You
cannot specify a single provider you must specify a whole distribution
(stack) as remote.
This PR also significantly fixes / upgrades testing infrastructure so
you can now test against a remotely hosted stack server by just doing
```bash
pytest -s -v -m remote test_agents.py \
--inference-model=Llama3.1-8B-Instruct --safety-shield=Llama-Guard-3-1B \
--env REMOTE_STACK_URL=http://localhost:5001
```
Also fixed `test_agents_persistence.py` (which was broken) and killed
some deprecated testing functions.
## Test Plan
All the tests.
# What does this PR do?
This PR brings back the facility to not force registration of resources
onto the user. This is not just annoying but actually not feasible
sometimes. For example, you may have a Stack which boots up with private
providers for inference for models A and B. There is no way for the user
to actually know which model is being served by these providers now (to
be able to register it.)
How will this avoid the users needing to do registration? In a follow-up
diff, I will make sure I update the sample run.yaml files so they list
the models served by the distributions explicitly. So when users do
`llama stack build --template <...>` and run it, their distributions
come up with the right set of models they expect.
For self-hosted distributions, it also allows us to have a place to
explicit list the models that need to be served to make the "complete"
stack (including safety, e.g.)
## Test Plan
Started ollama locally with two lightweight models: Llama3.2-3B-Instruct
and Llama-Guard-3-1B.
Updated all the tests including agents. Here's the tests I ran so far:
```bash
pytest -s -v -m "fireworks and llama_3b" test_text_inference.py::TestInference \
--env FIREWORKS_API_KEY=...
pytest -s -v -m "ollama and llama_3b" test_text_inference.py::TestInference
pytest -s -v -m ollama test_safety.py
pytest -s -v -m faiss test_memory.py
pytest -s -v -m ollama test_agents.py \
--inference-model=Llama3.2-3B-Instruct --safety-model=Llama-Guard-3-1B
```
Found a few bugs here and there pre-existing that these test runs fixed.
Splits the meta-reference safety implementation into three distinct providers:
- inline::llama-guard
- inline::prompt-guard
- inline::code-scanner
Note that this PR is a backward incompatible change to the llama stack server. I have added deprecation_error field to ProviderSpec -- the server reads it and immediately barfs. This is used to direct the user with a specific message on what action to perform. An automagical "config upgrade" is a bit too much work to implement right now :/
(Note that we will be gradually prefixing all inline providers with inline:: -- I am only doing this for this set of new providers because otherwise existing configuration files will break even more badly.)
* persist registered objects with distribution
* linter fixes
* comment
* use annotate and field discriminator
* workign tests
* donot use global state
* precommit failures fixed
* add back Any
* fix imports
* remove unnecessary changes in ollama
* precommit failures fixed
* make kvstore configurable for dist and rename registry
* add comment about registry list return
* fix linter errors
* use registry to hydrate
* remove debug print
* linter fixes
* remove kvstore.db
* rename distribution_registry_store
---------
Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
This PR makes several core changes to the developer experience surrounding Llama Stack.
Background: PR #92 introduced the notion of "routing" to the Llama Stack. It introduces three object types: (1) models, (2) shields and (3) memory banks. Each of these objects can be associated with a distinct provider. So you can get model A to be inferenced locally while model B, C can be inference remotely (e.g.)
However, this had a few drawbacks:
you could not address the provider instances -- i.e., if you configured "meta-reference" with a given model, you could not assign an identifier to this instance which you could re-use later.
the above meant that you could not register a "routing_key" (e.g. model) dynamically and say "please use this existing provider I have already configured" for a new model.
the terms "routing_table" and "routing_key" were exposed directly to the user. in my view, this is way too much overhead for a new user (which almost everyone is.) people come to the stack wanting to do ML and encounter a completely unexpected term.
What this PR does: This PR structures the run config with only a single prominent key:
- providers
Providers are instances of configured provider types. Here's an example which shows two instances of the remote::tgi provider which are serving two different models.
providers:
inference:
- provider_id: foo
provider_type: remote::tgi
config: { ... }
- provider_id: bar
provider_type: remote::tgi
config: { ... }
Secondly, the PR adds dynamic registration of { models | shields | memory_banks } to the API surface. The distribution still acts like a "routing table" (as previously) except that it asks the backing providers for a listing of these objects. For example it asks a TGI or Ollama inference adapter what models it is serving. Only the models that are being actually served can be requested by the user for inference. Otherwise, the Stack server will throw an error.
When dynamically registering these objects, you can use the provider IDs shown above. Info about providers can be obtained using the Api.inspect set of endpoints (/providers, /routes, etc.)
The above examples shows the correspondence between inference providers and models registry items. Things work similarly for the safety <=> shields and memory <=> memory_banks pairs.
Registry: This PR also makes it so that Providers need to implement additional methods for registering and listing objects. For example, each Inference provider is now expected to implement the ModelsProtocolPrivate protocol (naming is not great!) which consists of two methods
register_model
list_models
The goal is to inform the provider that a certain model needs to be supported so the provider can make any relevant backend changes if needed (or throw an error if the model cannot be supported.)
There are many other cleanups included some of which are detailed in a follow-up comment.
Test Plan:
First, start a TGI container with `meta-llama/Llama-Guard-3-8B` model
serving on port 5099. See https://github.com/meta-llama/llama-stack/pull/53 and its
description for how.
Then run llama-stack with the following run config:
```
image_name: safety
docker_image: null
conda_env: safety
apis_to_serve:
- models
- inference
- shields
- safety
api_providers:
inference:
providers:
- remote::tgi
safety:
providers:
- meta-reference
telemetry:
provider_id: meta-reference
config: {}
routing_table:
inference:
- provider_id: remote::tgi
config:
url: http://localhost:5099
api_token: null
hf_endpoint_name: null
routing_key: Llama-Guard-3-8B
safety:
- provider_id: meta-reference
config:
llama_guard_shield:
model: Llama-Guard-3-8B
excluded_categories: []
disable_input_check: false
disable_output_check: false
prompt_guard_shield: null
routing_key: llama_guard
```
Now simply run `python -m llama_stack.apis.safety.client localhost
<port>` and check that the llama_guard shield calls run correctly. (The
injection_shield calls fail as expected since we have not set up a
router for them.)
This is yet another of those large PRs (hopefully we will have less and less of them as things mature fast). This one introduces substantial improvements and some simplifications to the stack.
Most important bits:
* Agents reference implementation now has support for session / turn persistence. The default implementation uses sqlite but there's also support for using Redis.
* We have re-architected the structure of the Stack APIs to allow for more flexible routing. The motivating use cases are:
- routing model A to ollama and model B to a remote provider like Together
- routing shield A to local impl while shield B to a remote provider like Bedrock
- routing a vector memory bank to Weaviate while routing a keyvalue memory bank to Redis
* Support for provider specific parameters to be passed from the clients. A client can pass data using `x_llamastack_provider_data` parameter which can be type-checked and provided to the Adapter implementations.
* API Keys passed from Client instead of distro configuration
* delete distribution registry
* Rename the "package" word away
* Introduce a "Router" layer for providers
Some providers need to be factorized and considered as thin routing
layers on top of other providers. Consider two examples:
- The inference API should be a routing layer over inference providers,
routed using the "model" key
- The memory banks API is another instance where various memory bank
types will be provided by independent providers (e.g., a vector store
is served by Chroma while a keyvalue memory can be served by Redis or
PGVector)
This commit introduces a generalized routing layer for this purpose.
* update `apis_to_serve`
* llama_toolchain -> llama_stack
* Codemod from llama_toolchain -> llama_stack
- added providers/registry
- cleaned up api/ subdirectories and moved impls away
- restructured api/api.py
- from llama_stack.apis.<api> import foo should work now
- update imports to do llama_stack.apis.<api>
- update many other imports
- added __init__, fixed some registry imports
- updated registry imports
- create_agentic_system -> create_agent
- AgenticSystem -> Agent
* Moved some stuff out of common/; re-generated OpenAPI spec
* llama-toolchain -> llama-stack (hyphens)
* add control plane API
* add redis adapter + sqlite provider
* move core -> distribution
* Some more toolchain -> stack changes
* small naming shenanigans
* Removing custom tool and agent utilities and moving them client side
* Move control plane to distribution server for now
* Remove control plane from API list
* no codeshield dependency randomly plzzzzz
* Add "fire" as a dependency
* add back event loggers
* stack configure fixes
* use brave instead of bing in the example client
* add init file so it gets packaged
* add init files so it gets packaged
* Update MANIFEST
* bug fix
---------
Co-authored-by: Hardik Shah <hjshah@fb.com>
Co-authored-by: Xi Yan <xiyan@meta.com>
Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
2024-09-17 19:51:35 -07:00
Renamed from llama_toolchain/core/server.py (Browse further)