Commit graph

370 commits

Author SHA1 Message Date
Michael Clifford
093881071a
fix: add max_tokens slider to playground tools page (#1958)
# What does this PR do?

This PR adds a `max_tokens` slider to playground tools page. I have
found that in some instances the llama stack server throws a 500 error
if the max_tokens value is not explicitly set in the agent's
`sampling_params`. This PR, uses the same implementation of the
`max_tokens` slider from the chat page, and includes it on the tools
page.


## Test Plan
1. Attempting to call a tool without these changes results in a `500:
Internal server error: An unexpected error occurred`.
2. Attempting to call a tool with these changes results in the expected
output.

Signed-off-by: Michael Clifford <mcliffor@redhat.com>
2025-04-15 09:11:08 -07:00
Peter Double
86c6f1f112
fix: FastAPI built-in paths bypass custom routing (Docs) and update r… (#1841)
## What does this PR do?

This PR improves the server's request routing logic by ensuring built-in
FastAPI paths such as `/docs`, `/redoc`, `/openapi.json`,
`/favicon.ico`, and `/static` bypass the custom `TracingMiddleware`.
This prevents unnecessary tracing logic for documentation and static
file requests, ensuring better performance and cleaner logs.

Additionally, it adds proper metadata (`title`, `description`, and
`version`) to the FastAPI application initialization and updates the
requirements document accordingly.

[//]: # (Closes #1822 )

---

## Test Plan

- Ran the server locally with `uvicorn` using the provided `run.yaml`
config
- Verified that:
- FastAPI docs (`/docs`, `/redoc`) load correctly without triggering the
custom tracing middleware
  - All other routes still go through the middleware and trace logic
  - Application metadata appears as expected in the OpenAPI docs

To reproduce:
1. Start the server with `python server.py --template <template-name>`
2. Navigate to `/docs` and `/redoc`
3. Confirm that no extra trace headers are added for those routes
4. Confirm other API endpoints behave as expected and include
`x-trace-id` in the response headers

[//]: # (## Documentation)

---

Froze the requirements file to include many of the other libraries that
have been added in the past few releases to make install easier.

---------

Co-authored-by: Sébastien Han <seb@redhat.com>
2025-04-14 13:28:25 -04:00
Ben Browning
7641a5cd0b
fix: 100% OpenAI API verification for together and fireworks (#1946)
# What does this PR do?

TLDR: Changes needed to get 100% passing tests for OpenAI API
verification tests when run against Llama Stack with the `together`,
`fireworks`, and `openai` providers. And `groq` is better than before,
at 88% passing.

This cleans up the OpenAI API support for image message types
(specifically `image_url` types) and handling of the `response_format`
chat completion parameter. Both of these required a few more Pydantic
model definitions in our Inference API, just to move from the
not-quite-right stubs I had in place to something fleshed out to match
the actual OpenAI API specs.

As part of testing this, I also found and fixed a bug in the litellm
implementation of openai_completion and openai_chat_completion, so the
providers based on those should actually be working now.

The method `prepare_openai_completion_params` in
`llama_stack/providers/utils/inference/openai_compat.py` was improved to
actually recursively clean up input parameters, including handling of
lists, dicts, and dumping of Pydantic models to dicts. These changes
were required to get to 100% passing tests on the OpenAI API
verification against the `openai` provider.

With the above, the together.ai provider was passing as well as it is
without Llama Stack. But, since we have Llama Stack in the middle, I
took the opportunity to clean up the together.ai provider so that it now
also passes the OpenAI API spec tests we have at 100%. That means
together.ai is now passing our verification test better when using an
OpenAI client talking to Llama Stack than it is when hitting together.ai
directly, without Llama Stack in the middle.

And, another round of work for Fireworks to improve translation of
incoming OpenAI chat completion requests to Llama Stack chat completion
requests gets the fireworks provider passing at 100%. The server-side
fireworks.ai tool calling support with OpenAI chat completions and Llama
4 models isn't great yet, but by pointing the OpenAI clients at Llama
Stack's API we can clean things up and get everything working as
expected for Llama 4 models.

## Test Plan

### OpenAI API Verification Tests

I ran the OpenAI API verification tests as below and 100% of the tests
passed.

First, start a Llama Stack server that runs the `openai` provider with
the `gpt-4o` and `gpt-4o-mini` models deployed. There's not a template
setup to do this out of the box, so I added a
`tests/verifications/openai-api-verification-run.yaml` to do this.

First, ensure you have the necessary API key environment variables set:

```
export TOGETHER_API_KEY="..."
export FIREWORKS_API_KEY="..."
export OPENAI_API_KEY="..."
```

Then, run a Llama Stack server that serves up all these providers:

```
llama stack run \
      --image-type venv \
      tests/verifications/openai-api-verification-run.yaml
```

Finally, generate a new verification report against all these providers,
both with and without the Llama Stack server in the middle.

```
python tests/verifications/generate_report.py \
      --run-tests \
      --provider \
        together \
        fireworks \
        groq \
        openai \
        together-llama-stack \
        fireworks-llama-stack \
        groq-llama-stack \
        openai-llama-stack
```

You'll see that most of the configurations with Llama Stack in the
middle now pass at 100%, even though some of them do not pass at 100%
when hitting the backend provider's API directly with an OpenAI client.

### OpenAI Completion Integration Tests with vLLM:

I also ran the smaller `test_openai_completion.py` test suite (that's
not yet merged with the verification tests) on multiple of the
providers, since I had to adjust the method signature of
openai_chat_completion a bit and thus had to touch lots of these
providers to match. Here's the tests I ran there, all passing:

```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```

### OpenAI Completion Integration Tests with ollama

```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```

### OpenAI Completion Integration Tests with together.ai

```
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" llama stack build --template together --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct-Turbo"
```

### OpenAI Completion Integration Tests with fireworks.ai

```
INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" llama stack build --template fireworks --image-type venv --run
```

in another terminal

```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.1-8B-Instruct"

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-04-14 08:56:29 -07:00
Sébastien Han
69554158fa
feat: add health to all providers through providers endpoint (#1418)
The `/v1/providers` now reports the health status of each
provider when implemented.

```
curl -L http://127.0.0.1:8321/v1/providers|jq
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  4072  100  4072    0     0   246k      0 --:--:-- --:--:-- --:--:--  248k
{
  "data": [
    {
      "api": "inference",
      "provider_id": "ollama",
      "provider_type": "remote::ollama",
      "config": {
        "url": "http://localhost:11434"
      },
      "health": {
        "status": "OK"
      }
    },
    {
      "api": "vector_io",
      "provider_id": "faiss",
      "provider_type": "inline::faiss",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/faiss_store.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "safety",
      "provider_id": "llama-guard",
      "provider_type": "inline::llama-guard",
      "config": {
        "excluded_categories": []
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "agents",
      "provider_id": "meta-reference",
      "provider_type": "inline::meta-reference",
      "config": {
        "persistence_store": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/agents_store.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "telemetry",
      "provider_id": "meta-reference",
      "provider_type": "inline::meta-reference",
      "config": {
        "service_name": "llama-stack",
        "sinks": "console,sqlite",
        "sqlite_db_path": "/Users/leseb/.llama/distributions/ollama/trace_store.db"
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "eval",
      "provider_id": "meta-reference",
      "provider_type": "inline::meta-reference",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/meta_reference_eval.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "datasetio",
      "provider_id": "huggingface",
      "provider_type": "remote::huggingface",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/huggingface_datasetio.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "datasetio",
      "provider_id": "localfs",
      "provider_type": "inline::localfs",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/localfs_datasetio.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "scoring",
      "provider_id": "basic",
      "provider_type": "inline::basic",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "scoring",
      "provider_id": "llm-as-judge",
      "provider_type": "inline::llm-as-judge",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "scoring",
      "provider_id": "braintrust",
      "provider_type": "inline::braintrust",
      "config": {
        "openai_api_key": "********"
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "brave-search",
      "provider_type": "remote::brave-search",
      "config": {
        "api_key": "********",
        "max_results": 3
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "tavily-search",
      "provider_type": "remote::tavily-search",
      "config": {
        "api_key": "********",
        "max_results": 3
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "code-interpreter",
      "provider_type": "inline::code-interpreter",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "rag-runtime",
      "provider_type": "inline::rag-runtime",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "model-context-protocol",
      "provider_type": "remote::model-context-protocol",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "wolfram-alpha",
      "provider_type": "remote::wolfram-alpha",
      "config": {
        "api_key": "********"
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    }
  ]
}
```

Per providers too:

```
curl -L http://127.0.0.1:8321/v1/providers/ollama
{"api":"inference","provider_id":"ollama","provider_type":"remote::ollama","config":{"url":"http://localhost:11434"},"health":{"status":"OK"}}
```

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-14 11:59:36 +02:00
Ashwin Bharambe
429f6de7d7 fix: misc fixes for tests kill horrible warnings 2025-04-12 17:12:11 -07:00
Ashwin Bharambe
8b4158169f fix: dont check protocol compliance for experimental methods 2025-04-12 16:26:32 -07:00
Ashwin Bharambe
f34f22f8c7
feat: add batch inference API to llama stack inference (#1945)
# What does this PR do?

This PR adds two methods to the Inference API:
- `batch_completion`
- `batch_chat_completion`

The motivation is for evaluations targeting a local inference engine
(like meta-reference or vllm) where batch APIs provide for a substantial
amount of acceleration.

Why did I not add this to `Api.batch_inference` though? That just
resulted in a _lot_ more book-keeping given the structure of Llama
Stack. Had I done that, I would have needed to create a notion of a
"batch model" resource, setup routing based on that, etc. This does not
sound ideal.

So what's the future of the batch inference API? I am not sure. Maybe we
can keep it for true _asynchronous_ execution. So you can submit
requests, and it can return a Job instance, etc.

## Test Plan

Run meta-reference-gpu using:
```bash
export INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct
export INFERENCE_CHECKPOINT_DIR=../checkpoints/Llama-4-Scout-17B-16E-Instruct-20250331210000
export MODEL_PARALLEL_SIZE=4
export MAX_BATCH_SIZE=32
export MAX_SEQ_LEN=6144

LLAMA_MODELS_DEBUG=1 llama stack run meta-reference-gpu
```

Then run the batch inference test case.
2025-04-12 11:41:12 -07:00
Aidan Reilly
51492bd9b6
docs: Update docs and fix warning in start-stack.sh (#1937)
Small docs update and an update for `start-stack.sh` with missing color
and if statment logic.

# What does this PR do?
1. Makes a small change to start-stack.sh to resolve this error:
```cmd
/home/aireilly/.local/lib/python3.13/site-packages/llama_stack/distribution/start_stack.sh: line 76: [: missing ]'
```
2. Adds a missing $GREEN colour to start-stack.sh
3. Updated `docs/source/getting_started/detailed_tutorial.md` with some
small changes and corrections.

## Test Plan
Procedures described in
`docs/source/getting_started/detailed_tutorial.md` were verified on
Linux Fedora 41.
2025-04-11 16:26:17 -07:00
Ben Browning
2b2db5fbda
feat: OpenAI-Compatible models, completions, chat/completions (#1894)
# What does this PR do?

This stubs in some OpenAI server-side compatibility with three new
endpoints:

/v1/openai/v1/models
/v1/openai/v1/completions
/v1/openai/v1/chat/completions

This gives common inference apps using OpenAI clients the ability to
talk to Llama Stack using an endpoint like
http://localhost:8321/v1/openai/v1 .

The two "v1" instances in there isn't awesome, but the thinking is that
Llama Stack's API is v1 and then our OpenAI compatibility layer is
compatible with OpenAI V1. And, some OpenAI clients implicitly assume
the URL ends with "v1", so this gives maximum compatibility.

The openai models endpoint is implemented in the routing layer, and just
returns all the models Llama Stack knows about.

The following providers should be working with the new OpenAI
completions and chat/completions API:
* remote::anthropic (untested)
* remote::cerebras-openai-compat (untested)
* remote::fireworks (tested)
* remote::fireworks-openai-compat (untested)
* remote::gemini (untested)
* remote::groq-openai-compat (untested)
* remote::nvidia (tested)
* remote::ollama (tested)
* remote::openai (untested)
* remote::passthrough (untested)
* remote::sambanova-openai-compat (untested)
* remote::together (tested)
* remote::together-openai-compat (untested)
* remote::vllm (tested)

The goal to support this for every inference provider - proxying
directly to the provider's OpenAI endpoint for OpenAI-compatible
providers. For providers that don't have an OpenAI-compatible API, we'll
add a mixin to translate incoming OpenAI requests to Llama Stack
inference requests and translate the Llama Stack inference responses to
OpenAI responses.

This is related to #1817 but is a bit larger in scope than just chat
completions, as I have real use-cases that need the older completions
API as well.

## Test Plan

### vLLM

```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run

LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```

### ollama
```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run

LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```



## Documentation

Run a Llama Stack distribution that uses one of the providers mentioned
in the list above. Then, use your favorite OpenAI client to send
completion or chat completion requests with the base_url set to
http://localhost:8321/v1/openai/v1 . Replace "localhost:8321" with the
host and port of your Llama Stack server, if different.

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-04-11 13:14:17 -07:00
Ilya Kolchinsky
40f41af2f7
feat: Add a direct (non-agentic) RAG option to the Playground RAG page (#1940)
# What does this PR do?
This PR makes it possible to switch between agentic and non-agentic RAG
when running the respective Playground page.
When non-agentic RAG is selected, user queries are answered by directly
querying the vector DB, augmenting the prompt, and sending the extended
prompt to the model via Inference API.

## Test Plan
- Launch the Playground and go to the RAG page;
- Select the vector DB ID;
- Adjust other configuration parameters if necessary;
- Set the radio button to Agent-based RAG;
- Send a message to the chat;
- The query will be answered by an agent using the knowledge search tool
as indicated by the output;
- Click the 'Clear Chat' button to make it possible to switch modes;
- Send a message to the chat again;
- This time, the query will be answered by the model directly as can be
deduced from the reply.
2025-04-11 10:16:10 -07:00
Matthew Farrellee
c6fa47db6f
fix: ensure resource registration arguments are typed (#1941)
# What does this PR do?

closes https://github.com/meta-llama/llama-stack/issues/1586

this issue arises when loading an mcp_endpoint from run.yaml. the issue
does not manifest for mcp servers added via a running distro server. the
existing tests only cover the case of adding to a running server.

the code for loading run.yaml strips type information from mcp_endpoint,
passing `{"uri": ...}` instead of `URL(uri=...)` along to the resource
provider registration.

## Test Plan
1. run an mcp server
2. add an mcp tool config to the dev.py, e.g.
```
diff --git a/llama_stack/templates/dev/dev.py b/llama_stack/templates/dev/dev.py
index 69924acb..e0dc7189 100644
--- a/llama_stack/templates/dev/dev.py
+++ b/llama_stack/templates/dev/dev.py
@@ -6,6 +6,8 @@
 
 from typing import List, Tuple
 
+from llama_stack.apis.common.content_types import URL
+
 from llama_stack.apis.models.models import ModelType
 from llama_stack.distribution.datatypes import (
     ModelInput,
@@ -154,6 +156,11 @@ def get_distribution_template() -> DistributionTemplate:
             toolgroup_id="builtin::code_interpreter",
             provider_id="code-interpreter",
         ),
+        ToolGroupInput(
+            toolgroup_id="mcp::filesystem",
+            provider_id="model-context-protocol",
+            mcp_endpoint=URL(uri="http://localhost:8002/sse"),
+        ),
     ]
     embedding_model = ModelInput(
         model_id="all-MiniLM-L6-v2",
```
3. run distro_codegen.py
4. llama stack build --template dev --run

before this pr, the `llama stack run` would fail w/ `AttributeError:
'dict' object has no attribute 'uri'`, after it will succeed.
2025-04-11 09:25:57 -07:00
Ilya Kolchinsky
79fc81f78f
fix: Playground RAG page errors (#1928)
# What does this PR do?
This PR fixes two issues with the RAG page of the Playground UI:

1. When the user modifies a configurable setting via a widget (e.g.,
system prompt, temperature, etc.), the agent is not recreated. Thus, the
change has no effect and the user gets no indication of that.
2. After the first issue is fixed, it becomes possible to recreate the
agent mid-conversation or even mid-generation. To mitigate this, widgets
related to agent configuration are now disabled when a conversation is
in progress (i.e., when the chat is non-empty). They are automatically
enabled again when the user resets the chat history.

## Test Plan

- Launch the Playground and go to the RAG page;
- Select the vector DB ID;
- Send a message to the agent via the chat;
- The widgets in charge of the agent parameters will become disabled at
this point;
- Send a second message asking the model about the content of the first
message;
- The reply will indicate that the two messages were sent over the same
session, that is, the agent was not recreated;
- Click the 'Clear Chat' button;
- All widgets will be enabled and a new agent will be created (which can
be validated by sending another message).
2025-04-10 13:38:31 -07:00
Sébastien Han
770b38f8b5
chore: simplify running the demo UI (#1907)
# What does this PR do?

* Manage UI deps in pyproject
* Use a new "ui" dep group to pull the deps with "uv"
* Simplify the run command
* Bump versions in requirements.txt

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-09 11:22:29 -07:00
Michael Clifford
5c010e234a
fix: add tavily_search option to playground api (#1909)
# What does this PR do?
This PR adds the "TAVILY_SEARCH_API_KEY" option to the playground to
enable the use of the websearch tool.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

```
export TAVILY_SEARCH_API_KEY=***
streamlit run  llama_stack/distribution/ui/app.py      
```
Without this change the builtin websearch tool will fail due to missing
API key.


[//]: # (## Documentation)
Related to #1902

Signed-off-by: Michael Clifford <mcliffor@redhat.com>
2025-04-09 15:56:41 +02:00
Michael Clifford
9657105304
feat: Add tools page to playground (#1904)
# What does this PR do?

This PR adds an additional page to the playground called "Tools". This
page connects to a llama-stack server and lists all the available LLM
models, builtin tools and MCP tools in the sidebar. Users can select
whatever combination of model and tools they want from the sidebar for
their agent. Once the selections are made, users can chat with their
agent similarly to the RAG page and test out agent tool use.

closes #1902 

## Test Plan

Ran the following commands with a llama-stack server and the updated
playground worked as expected.
```
export LLAMA_STACK_ENDPOINT="http://localhost:8321"     
streamlit run  llama_stack/distribution/ui/app.py
```

[//]: # (## Documentation)

Signed-off-by: Michael Clifford <mcliffor@redhat.com>
2025-04-09 15:26:52 +02:00
Jaland
30b49d8dfa
fix: Playground Container Issue (#1868)
**What does this PR do?**

This PR fixes a build issue with the Containerfile caused by missing
requirement `llama-stack`. It updates the Containerfile to include the
necessary requirements and upgrades the Python version to ensure
successful builds.

**Test Plan**
The updated Containerfile has been tested, and the build now completes
successfully with the required dependencies included.
2025-04-09 11:45:15 +02:00
Paolo Dettori
22814299b0
fix: solve unregister_toolgroup error (#1608)
# What does this PR do?
Fixes issue #1537 that causes "500 Internal Server Error" when
unregistering a toolgroup

# (Closes #1537 )

## Test Plan

```console
$ pytest -s -v tests/integration/tool_runtime/test_registration.py --stack-config=ollama --env INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
INFO     2025-03-14 21:15:03,999 tests.integration.conftest:41 tests: Setting DISABLE_CODE_SANDBOX=1 for macOS          
/opt/homebrew/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"

  warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
===================================================== test session starts =====================================================
platform darwin -- Python 3.10.16, pytest-8.3.5, pluggy-1.5.0 -- /opt/homebrew/opt/python@3.10/bin/python3.10
cachedir: .pytest_cache
rootdir: /Users/paolo/Projects/aiplatform/llama-stack
configfile: pyproject.toml
plugins: asyncio-0.25.3, anyio-4.8.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 1 item                                                                                                              

tests/integration/tool_runtime/test_registration.py::test_register_and_unregister_toolgroup[None-None-None-None-None] INFO     2025-03-14 21:15:04,478 llama_stack.providers.remote.inference.ollama.ollama:75 inference: checking            
         connectivity to Ollama at `http://localhost:11434`...                                                          
INFO     2025-03-14 21:15:05,350 llama_stack.providers.remote.inference.ollama.ollama:294 inference: Pulling embedding  
         model `all-minilm:latest` if necessary...                                                                      
INFO:     Started server process [78391]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
INFO:     127.0.0.1:57424 - "GET /sse HTTP/1.1" 200 OK
INFO:     127.0.0.1:57434 - "GET /sse HTTP/1.1" 200 OK
INFO     2025-03-14 21:15:16,129 mcp.client.sse:51 uncategorized: Connecting to SSE endpoint: http://localhost:8000/sse 
INFO:     127.0.0.1:57445 - "GET /sse HTTP/1.1" 200 OK
INFO     2025-03-14 21:15:16,146 mcp.client.sse:71 uncategorized: Received endpoint URL:                                
         http://localhost:8000/messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b                                    
INFO     2025-03-14 21:15:16,147 mcp.client.sse:140 uncategorized: Starting post writer with endpoint URL:              
         http://localhost:8000/messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b                                    
INFO:     127.0.0.1:57447 - "POST /messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b HTTP/1.1" 202 Accepted
INFO:     127.0.0.1:57447 - "POST /messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b HTTP/1.1" 202 Accepted
INFO:     127.0.0.1:57447 - "POST /messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b HTTP/1.1" 202 Accepted
INFO     2025-03-14 21:15:16,155 mcp.server.lowlevel.server:535 uncategorized: Processing request of type               
         ListToolsRequest                                                                                               
PASSED

=============================================== 1 passed, 4 warnings in 12.17s ================================================
```

---------

Signed-off-by: Paolo Dettori <dettori@us.ibm.com>
2025-04-09 10:56:07 +02:00
Sébastien Han
389767010b
feat: ability to execute external providers (#1672)
# What does this PR do?

Providers that live outside of the llama-stack codebase are now
supported.
A new property `external_providers_dir` has been added to the main
config and can be configured as follow:

```
external_providers_dir: /etc/llama-stack/providers.d/
```

Where the expected structure is:

```
providers.d/
  inference/
    custom_ollama.yaml
    vllm.yaml
  vector_io/
    qdrant.yaml
```

Where `custom_ollama.yaml` is:

```
adapter:
  adapter_type: custom_ollama
  pip_packages: ["ollama", "aiohttp"]
  config_class: llama_stack_ollama_provider.config.OllamaImplConfig
  module: llama_stack_ollama_provider
api_dependencies: []
optional_api_dependencies: []
```

Obviously the package must be installed on the system, here is the
`llama_stack_ollama_provider` example:

```
$ uv pip show llama-stack-ollama-provider
Using Python 3.10.16 environment at: /Users/leseb/Documents/AI/llama-stack/.venv
Name: llama-stack-ollama-provider
Version: 0.1.0
Location: /Users/leseb/Documents/AI/llama-stack/.venv/lib/python3.10/site-packages
Editable project location: /private/var/folders/mq/rnm5w_7s2d3fxmtkx02knvhm0000gn/T/tmp.ZBHU5Ezxg4/ollama/llama-stack-ollama-provider
Requires:
Required-by:
```

Closes: https://github.com/meta-llama/llama-stack/issues/658

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-09 10:30:41 +02:00
Sébastien Han
7d9adf22ad
refactor: move missing tests to test directory (#1892)
Move the test_context.py under the main tests directory, and fix the
code.

The problem was that the function captures the initial values of the
context variables and then restores those same initial values before
each iteration. This means that any modifications made to the context
variables during iteration are lost when the next iteration starts.

Error was:

```
====================================================== FAILURES =======================================================
______________________________________ test_preserve_contexts_across_event_loops ______________________________________

    @pytest.mark.asyncio
    async def test_preserve_contexts_across_event_loops():
        """
        Test that context variables are preserved across event loop boundaries with nested generators.
        This simulates the real-world scenario where:
        1. A new event loop is created for each streaming request
        2. The async generator runs inside that loop
        3. There are multiple levels of nested generators
        4. Context needs to be preserved across these boundaries
        """
        # Create context variables
        request_id = ContextVar("request_id", default=None)
        user_id = ContextVar("user_id", default=None)

        # Set initial values

        # Results container to verify values across thread boundaries
        results = []

        # Inner-most generator (level 2)
        async def inner_generator():
            # Should have the context from the outer scope
            yield (1, request_id.get(), user_id.get())

            # Modify one context variable
            user_id.set("user-modified")

            # Should reflect the modification
            yield (2, request_id.get(), user_id.get())

        # Middle generator (level 1)
        async def middle_generator():
            inner_gen = inner_generator()

            # Forward the first yield from inner
            item = await inner_gen.__anext__()
            yield item

            # Forward the second yield from inner
            item = await inner_gen.__anext__()
            yield item

            request_id.set("req-modified")

            # Add our own yield with both modified variables
            yield (3, request_id.get(), user_id.get())

        # Function to run in a separate thread with a new event loop
        def run_in_new_loop():
            # Create a new event loop for this thread
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)

            try:
                # Outer generator (runs in the new loop)
                async def outer_generator():
                    request_id.set("req-12345")
                    user_id.set("user-6789")
                    # Wrap the middle generator
                    wrapped_gen = preserve_contexts_async_generator(middle_generator(), [request_id, user_id])

                    # Process all items from the middle generator
                    async for item in wrapped_gen:
                        # Store results for verification
                        results.append(item)

                # Run the outer generator in the new loop
                loop.run_until_complete(outer_generator())
            finally:
                loop.close()

        # Run the generator chain in a separate thread with a new event loop
        with ThreadPoolExecutor(max_workers=1) as executor:
            future = executor.submit(run_in_new_loop)
            future.result()  # Wait for completion

        # Verify the results
        assert len(results) == 3

        # First yield should have original values
        assert results[0] == (1, "req-12345", "user-6789")

        # Second yield should have modified user_id
        assert results[1] == (2, "req-12345", "user-modified")

        # Third yield should have both modified values
>       assert results[2] == (3, "req-modified", "user-modified")
E       AssertionError: assert (3, 'req-modified', 'user-6789') == (3, 'req-modified', 'user-modified')
E
E         At index 2 diff: 'user-6789' != 'user-modified'
E
E         Full diff:
E           (
E               3,
E               'req-modified',
E         -     'user-modified',
E         +     'user-6789',
E           )

tests/unit/distribution/test_context.py:155: AssertionError
-------------------------------------------------- Captured log call --------------------------------------------------
ERROR    asyncio:base_events.py:1758 Task was destroyed but it is pending!
task: <Task pending name='Task-7' coro=<<async_generator_athrow without __name__>()>>
================================================== warnings summary ===================================================
.venv/lib/python3.10/site-packages/pydantic/fields.py:1042
  /Users/leseb/Documents/AI/llama-stack/.venv/lib/python3.10/site-packages/pydantic/fields.py:1042: PydanticDeprecatedSince20: Using extra keyword arguments on `Field` is deprecated and will be removed. Use `json_schema_extra` instead. (Extra keys: 'contentEncoding'). Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.10/migration/
    warn(

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
=============================================== short test summary info ===============================================
FAILED tests/unit/distribution/test_context.py::test_preserve_contexts_across_event_loops - AssertionError: assert (3, 'req-modified', 'user-6789') == (3, 'req-modified', 'user-modified')

  At index 2 diff: 'user-6789' != 'user-modified'

  Full diff:
    (
        3,
        'req-modified',
  -     'user-modified',
  +     'user-6789',
    )
```

[//]: # (## Documentation)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-08 18:54:00 -07:00
Michael Clifford
c6e93e32f6
feat: Updated playground rag to use session id for persistent conversation (#1870)
# What does this PR do?

This PR updates the [playground RAG
example](llama_stack/distribution/ui/page/playground/rag.py) so that the
agent is able to use its builtin conversation history. Here we are using
streamlit's `cache_resource` functionality to prevent the agent from
re-initializing after every interaction as well as storing its
session_id in the `session_state`. This allows the agent in the RAG
example to behave more closely to how it works using the python-client
directly.

[//]: # (If resolving an issue, uncomment and update the line below)
Closes #1869 

## Test Plan

Without these changes, if you ask it "What is 2 + 2"? followed by the
question "What did I just ask?" It will provide an obviously incorrect
answer.

With these changes, you can ask the same series of questions and it will
provide the correct answer.

[//]: # (## Documentation)

Signed-off-by: Michael Clifford <mcliffor@redhat.com>
2025-04-08 09:46:13 +02:00
Ihar Hrachyshka
0a895c70d1
fix(api): don't return list for runtime tools (#1686)
# What does this PR do?

Don't return list for runtime tools. Instead return Response object for
pagination and consistency with other APIs.

---------

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-04-01 09:53:11 +02:00
Sébastien Han
2ffa2b77ed
refactor: extract pagination logic into shared helper function (#1770)
# What does this PR do?

Move pagination logic from LocalFS and HuggingFace implementations into
a common helper function to ensure consistent pagination behavior across
providers. This reduces code duplication and centralizes pagination
logic in one place.


## Test Plan

Run this script:

```
from llama_stack_client import LlamaStackClient

# Initialize the client
client = LlamaStackClient(base_url="http://localhost:8321")

# Register a dataset
response = client.datasets.register(
    purpose="eval/messages-answer",  # or "eval/question-answer" or "post-training/messages"
    source={"type": "uri", "uri": "huggingface://datasets/llamastack/simpleqa?split=train"},
    dataset_id="my_dataset",  # optional, will be auto-generated if not provided
    metadata={"description": "My evaluation dataset"},  # optional
)

# Verify the dataset was registered by listing all datasets
datasets = client.datasets.list()
print(f"Registered datasets: {[d.identifier for d in datasets]}")

# You can then access the data using the datasetio API
# rows = client.datasets.iterrows(dataset_id="my_dataset", start_index=1, limit=2)
rows = client.datasets.iterrows(dataset_id="my_dataset")
print(f"Data: {rows.data}")
```

And play with `start_index` and `limit`.

[//]: # (## Documentation)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-03-31 13:08:29 -07:00
ehhuang
3a2314dcef
fix(telemetry): library client does not log span (#1833) 2025-03-29 14:55:31 -07:00
Francisco Arceo
af6594f670
fix: Adding chunk_size_in_tokens to playground rag_tool insert (#1826)
# What does this PR do?
Adding chunk_size_in_tokens to playground rag_tool insert.

# Closes #1825 

## Test Plan
Tested locally.

[//]: # (## Documentation)

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-03-28 15:56:25 -04:00
Ihar Hrachyshka
18bac27d4e
fix: Use CONDA_DEFAULT_ENV presence as a flag to use conda mode (#1555)
# What does this PR do?

This is the second attempt to switch to system packages by default. Now
with a hack to detect conda environment - in which case conda image-type
is used.

Note: Conda will only be used when --image-name is unset *and*
CONDA_DEFAULT_ENV is set. This means that users without conda will
correctly fall back to using system packages when no --image-* arguments
are passed at all.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

Uses virtualenv:

```
$ llama stack build --template ollama --image-type venv
$ llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Using virtual environment: /home/ec2-user/src/llama-stack/schedule/.local
[...]
```

Uses system packages (virtualenv already initialized):

```
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
INFO     2025-03-27 20:46:22,882 llama_stack.cli.stack.run:142 server: No image type or image name provided. Assuming environment packages.
[...]
```

Attempt to run from environment packages without necessary packages
installed:
```
$ python -m venv barebones
$ . ./barebones/bin/activate
$ pip install -e . # to install llama command
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
ModuleNotFoundError: No module named 'fastapi'
```

^ failed as expected because the environment doesn't have necessary
packages installed.

Now install some packages in the new environment:

```
$ pip install fastapi opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp aiosqlite ollama openai datasets faiss-cpu mcp autoevals
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
```

Now see if setting CONDA_DEFAULT_ENV will change what happens by
default:

```
$ export CONDA_DEFAULT_ENV=base
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Using conda environment: base
Conda environment base does not exist.
[...]
```

---------

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-03-27 17:13:22 -04:00
Hardik Shah
cb2a9784ab
fix: multiple issues with getting_started notebook (#1795)
Fixes multiple issues 

1. llama stack build of dependencies was breaking with incompatible
numpy / pandas when importing datasets

Moved the notebook to start a local server instead of using library as a
client. This way the setup is cleaner since its all contained and by
using `uv run --with` we can test both the server setup process too in
CI and release time.

2. The change to [1] surfaced some other issues 
- running `llama stack run` was defaulting to conda env name 
- provider data was not being managed properly 
- Some notebook cells (telemetry for evals) were not updated with latest
changes

Fixed all the issues and update the notebook. 

### Test 

1. Manually run it all in local env 
2. `pytest -v -s --nbval-lax docs/getting_started.ipynb`
2025-03-26 10:59:12 -07:00
Ihar Hrachyshka
367c08f01e
feat(api): don't return a payload on file delete (#1640)
# What does this PR do?

This is to stay consistent with other APIs.

This change registers files in API, even though there are still no
providers. Removing tests that require a provider existing for a merged
API to enable it in API layer.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-03-25 17:12:36 -07:00
ehhuang
06788643b3
feat(telemetry): clean up spans (#1760) 2025-03-21 20:05:11 -07:00
Dinesh Yeduguru
5eb15684b4
feat: use same trace ids in stack and otel (#1759)
# What does this PR do?
1) Uses otel compatible id generation for stack
2) Stack starts returning trace id info in the header of response
3) We inject the same trace id that we have into otel in order to force
it to use our trace ids.

## Test Plan
```
 curl -i --request POST \
  --url http://localhost:8321/v1/inference/chat-completion \
  --header 'content-type: application/json' \
  --data '{
  "model_id": "meta-llama/Llama-3.1-70B-Instruct",
  "messages": [
    {
      "role": "user",
      "content": {
        "type": "text",
        "text": "where do humans live"
      }
    }
  ],
  "stream": false
}'
HTTP/1.1 200 OK
date: Fri, 21 Mar 2025 21:51:19 GMT
server: uvicorn
content-length: 1712
content-type: application/json
x-trace-id: 595101ede31ece116ebe35b26d67e8cf

{"metrics":[{"metric":"prompt_tokens","value":10,"unit":null},{"metric":"completion_tokens","value":320,"unit":null},{"metric":"total_tokens","value":330,"unit":null}],"completion_message":{"role":"assistant","content":"Humans live on the planet Earth, specifically on its landmasses and in its oceans. Here's a breakdown of where humans live:\n\n1. **Continents:** Humans inhabit all seven continents:\n\t* Africa\n\t* Antarctica ( temporary residents, mostly scientists and researchers)\n\t* Asia\n\t* Australia\n\t* Europe\n\t* North America\n\t* South America\n2. **Countries:** There are 196 countries recognized by the United Nations, and humans live in almost all of them.\n3. **Cities and towns:** Many humans live in urban areas, such as cities and towns, which are often located near coastlines, rivers, or other bodies of water.\n4. **Rural areas:** Some humans live in rural areas, such as villages, farms, and countryside.\n5. **Islands:** Humans inhabit many islands around the world, including tropical islands, island nations, and islands in the Arctic and Antarctic regions.\n6. **Underwater habitats:** A few humans live in underwater habitats, such as research stations and submarines.\n7. **Space:** A small number of humans have lived in space, including astronauts on the International Space Station and those who have visited the Moon.\n\nIn terms of specific environments, humans live in a wide range of ecosystems, including:\n\n* Deserts\n* Forests\n* Grasslands\n* Mountains\n* Oceans\n* Rivers\n* Tundras\n* Wetlands\n\nOverall, humans are incredibly adaptable and can be found living in almost every corner of the globe.","stop_reason":"end_of_turn","tool_calls":[]},"logprobs":null}
```

Same trace id in Jaeger and sqlite:

![Screenshot 2025-03-21 at 2 51
53 PM](https://github.com/user-attachments/assets/38cc04b0-568c-4b9d-bccd-d3b90e581c27)
![Screenshot 2025-03-21 at 2 52
38 PM](https://github.com/user-attachments/assets/722383ad-6305-4020-8a1c-6cfdf381c25f)
2025-03-21 15:41:26 -07:00
Xi Yan
baf68c665c
fix: fix jobs api literal return type (#1757)
# What does this PR do?

- We cannot directly return a literal type

> Note: this is not final jobs API change

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
<img width="837" alt="image"
src="https://github.com/user-attachments/assets/18a17561-35f9-443d-987d-54afdd6ff40c"
/>


[//]: # (## Documentation)
2025-03-21 14:04:21 -07:00
ehhuang
34f89bfbd6
feat(telemetry): use zero-width space to avoid clutter (#1754)
# What does this PR do?
Before 
<img width="858" alt="image"
src="https://github.com/user-attachments/assets/6cefb1ae-5603-4818-85ea-a0c337b986bc"
/>

Note the redundant 'llama-stack' in front of every span

## Test Plan
<img width="1171" alt="image"
src="https://github.com/user-attachments/assets/bdc5fd5b-ff1f-4f10-8b40-cff2ea93dd1f"
/>
2025-03-21 12:02:10 -07:00
ehhuang
f76550ce4e
feat(telemetry): normalize path (#1739)
# What does this PR do?
This will prevent 'operations' from being flooded 
<img width="401" alt="image"
src="https://github.com/user-attachments/assets/c95e0eeb-4a10-4003-88df-9bb6d0a548cd"
/>


Before
<img width="1049" alt="image"
src="https://github.com/user-attachments/assets/157fb614-e007-4cb3-a571-226e50525bfa"
/>


## Test Plan
After
<img width="811" alt="image"
src="https://github.com/user-attachments/assets/b2b10344-1d73-44e5-abee-a9f039090963"
/>
2025-03-21 10:17:43 -07:00
Ashwin Bharambe
03b5c61bfc
feat: make sure agent sessions are under access control (#1737)
This builds on top of #1703.

Agent sessions are now properly access controlled.

## Test Plan

Added unit tests
2025-03-21 07:31:16 -07:00
Ashwin Bharambe
f95bc29ca9
fix: handle registry errors gracefully (#1732)
We need to be able to handle stale registry entries gracefully. More
needs to be done when we are deleting important attributes from
resources which could have been persisted. But at the very least, the
server cannot die.

## Test Plan

Added unit tests
2025-03-20 15:24:07 -07:00
Dinesh Yeduguru
86f617a197
fix: tracing middleware to not start for lifespan events (#1730)
# What does this PR do?
Tracing middleware should not start tracing for lifespan events.
Lifespan event happens at server startup and shutdown and if we start
tracing for them, we will have an active trace for the lifetime of the
server, which messes up with regular tracing since we always expect the
traces to be never nested.

We started hitting this issue since
https://github.com/meta-llama/llama-stack/pull/1495.

## Test Plan
* llama stack run ~/.llama/distributions/fireworks/fireworks-run.yaml
* Verify in sqlite store that the trace now has non null span id
![Screenshot 2025-03-20 at 1 49
47 PM](https://github.com/user-attachments/assets/d77354a7-d5f1-4b53-a946-6adbd7a4f772)
2025-03-20 14:22:19 -07:00
Yuan Tang
029e4fc64d
fix: Add missing gcc in container build. Fixes #1716 (#1727)
# What does this PR do?

This should fix https://github.com/meta-llama/llama-stack/issues/1716

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-03-20 15:50:56 -04:00
ehhuang
ea6a4a14ce
feat(api): simplify client imports (#1687)
# What does this PR do?
closes #1554 

## Test Plan
test_agents.py
2025-03-20 10:15:49 -07:00
Ashwin Bharambe
01a25d9744
feat(server): add attribute based access control for resources (#1703)
This PR introduces a way to implement Attribute Based Access Control
(ABAC) for the Llama Stack server.

The rough design is:
- https://github.com/meta-llama/llama-stack/pull/1626 added a way for
the Llama Stack server to query an authenticator
- We build upon that and expect "access attributes" as part of the
response. These attributes indicate the scopes available for the
request.
- We use these attributes to perform access control for registered
resources as well as for constructing the default access control
policies for newly created resources.
- By default, if you support authentication but don't return access
attributes, we will add a unique namespace pointing to the API_KEY. That
way, all resources by default will be scoped to API_KEYs.

An important aspect of this design is that Llama Stack stays out of the
business of credential management or the CRUD for attributes. How you
manage your namespaces or projects is entirely up to you. The design
only implements access control checks for the metadata / book-keeping
information that the Stack tracks.

### Limitations

- Currently, read vs. write vs. admin permissions aren't made explicit,
but this can be easily extended by adding appropriate attributes to the
`AccessAttributes` data structure.
- This design does not apply to agent instances since they are not
considered resources the Stack knows about. Agent instances are
completely within the scope of the Agents API provider.

### Test Plan

Added unit tests, existing integration tests
2025-03-19 21:28:52 -07:00
Charlie Doern
a483a58c6e
chore: deprecate /v1/inspect/providers (#1678)
# What does this PR do?

with the new /v1/providers API, /v1/inspect/providers is duplicative,
deprecate it by removing the route, and add a test for the full
/v1/providers API

resolves #1623 

## Test Plan

`uv run pytest -v tests/integration/providers --stack-config=ollama
--text-model="meta-llama/Llama-3.2-3B-Instruct"
--embedding-model=all-MiniLM-L6-v2`

<img width="1512" alt="Screenshot 2025-03-18 at 9 18 38 AM"
src="https://github.com/user-attachments/assets/2db30f25-3ff6-4374-b39d-0047f093fe36"
/>

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-03-19 20:27:06 -07:00
Charlie Doern
1f04ca357b
fix: telemetry logger (#1714)
# What does this PR do?

currently if you have a run yaml without temeletry the following error
is hit:

TypeError: TelemetryAdapter.__init__() missing 1 required positional
argument: 'deps'

this is because the TelemetryAdapter requires a deps arg to be passed.
Pass {} to avoid errors.

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-03-19 20:26:13 -07:00
Michael Clifford
a7008dc15d
fix: Correctly set CLI_ARGS using BUILD_PLATFORM env with llama stack… (#1702)
# What does this PR do?
This PR updates `build_container.sh` to prevent an "unknown flag" error
when using the `BUILD_PLATFORM` environment variable during `llama stack
build`.


[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

Closes #1699 


## Test Plan

Running the following code with out these changes results in an "unknown
flag" error.

```
CONTAINER_BINARY=podman BUILD_PLATFORM=linux/amd64 llama stack build --template ollama --image-type container 
``` 

With these changes, the same command should build the image correctly.

Signed-off-by: Michael Clifford <mcliffor@redhat.com>
2025-03-19 16:18:11 -07:00
ehhuang
1902e5754c
fix: toolgroups unregister (#1704)
# What does this PR do?
FAILED
tests/integration/tools/test_tools.py::test_toolsgroups_unregister[None]
- AttributeError: 'coroutine' object has no attribute 'data'

## Test Plan
LLAMA_STACK_CONFIG=fireworks pytest -s -v
tests/integration/tools/test_tools.py
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with
[ReviewStack](https://reviewstack.dev/meta-llama/llama-stack/pull/1704).
* #1705
* __->__ #1704
2025-03-19 13:43:51 -07:00
Botao Chen
ab777ef5cd
fix: fix open-benchmark template (#1695)
## What does this PR do?
open-benchmark templated is broken after the datasets api refactor due
to 2 reasons
- provider_id and provider_resource_id are no longer needed 
- the type in run.yaml will be resolved as dict

this PR is to fix the above 2 issues 

## Test 
spin up a llama stack server successfully with llama stack run
`llama_stack/templates/open-benchmark/run.yaml`
2025-03-19 11:27:11 -07:00
Ashwin Bharambe
5b39d5a76a
feat(auth, rfc): Add support for Bearer (api_key) Authentication (#1626)
This PR adds support (or is a proposal for) for supporting API KEY
authentication on the Llama Stack server end. `llama-stack-client`
already supports accepting an api_key parameter and passes it down
through every request as an `Authentication: ` header.

Currently, Llama Stack does not propose APIs for handling authentication
or authorization for resources of any kind. Given that, and the fact
that any deployment will typically have _some_ authentication system
present, we simply adopt a delegation mechanism: delegate to an HTTPS
endpoint performing key management / authentication.

It is configured via: 
```yaml
server: 
   auth:
     endpoint: <...>
```

in the run.yaml configuration.


## How It Works

When authentication is enabled:

1. Every API request must include an `Authorization: Bearer <token>`
header
2. The server will send a _POST_ validation request to the configured
endpoint with the following payload:
   ```json
   {
     "api_key": "<token>",
     "request": {
       "path": "/api/path",
       "headers": { "header1": "value1", ... },
       "params": { "param1": "value1", ... }
     }
   }
   ```
3. If the authentication endpoint returns a 200 status code, the request
is allowed to proceed
4. If the authentication endpoint returns any other status code, a 401
Unauthorized response is returned

## Test Plan

Unit tests
2025-03-18 16:24:18 -07:00
Sarthak Deshpande
9c8e88ea9c
fix: Fixed import errors for UI and playground (#1666)
# What does this PR do?
Fixed import errors for playground and ui

---------

Co-authored-by: sarthakdeshpande <sarthak.deshpande@engati.com>
2025-03-18 15:00:48 -07:00
Sébastien Han
c029fbcd13
fix: return 4xx for non-existent resources in GET requests (#1635)
# What does this PR do?

- Removed Optional return types for GET methods
- Raised ValueError when requested resource is not found
- Ensures proper 4xx response for missing resources
- Updated the API generator to check for wrong signatures

```
$ uv run --with ".[dev]" ./docs/openapi_generator/run_openapi_generator.sh
Validating API method return types...

API Method Return Type Validation Errors:

Method ScoringFunctions.get_scoring_function returns Optional type
```

Closes: https://github.com/meta-llama/llama-stack/issues/1630

## Test Plan

Run the server then:

```
curl http://127.0.0.1:8321/v1/models/foo     
{"detail":"Invalid value: Model 'foo' not found"}%  
```

Server log:

```
INFO:     127.0.0.1:52307 - "GET /v1/models/foo HTTP/1.1" 400 Bad Request
09:51:42.654 [END] /v1/models/foo [StatusCode.OK] (134.65ms)
 09:51:42.651 [ERROR] Error executing endpoint route='/v1/models/{model_id:path}' method='get'
Traceback (most recent call last):
  File "/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py", line 193, in endpoint
    return await maybe_await(value)
  File "/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py", line 156, in maybe_await
    return await value
  File "/Users/leseb/Documents/AI/llama-stack/llama_stack/providers/utils/telemetry/trace_protocol.py", line 102, in async_wrapper
    result = await method(self, *args, **kwargs)
  File "/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/routers/routing_tables.py", line 217, in get_model
    raise ValueError(f"Model '{model_id}' not found")
ValueError: Model 'foo' not found
```

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-03-18 14:06:53 -07:00
Jamie Land
f4dc290705
feat: Created Playground Containerfile and Image Workflow (#1256)
# What does this PR do?
Adds a container file that can be used to build the playground UI.

This file will be built by this PR in the stack-ops repo:
https://github.com/meta-llama/llama-stack-ops/pull/9

Docker command in the docs will need to change once I know the address
of the official repository.

## Test Plan

Tested image on my local Openshift Instance using this helm chart:
https://github.com/Jaland/llama-stack-helm/tree/main/llama-stack

[//]: # (## Documentation)

---------

Co-authored-by: Jamie Land <hokie10@gmail.com>
2025-03-18 09:26:49 -07:00
Xi Yan
5287b437ae
feat(api): (1/n) datasets api clean up (#1573)
## PR Stack
- https://github.com/meta-llama/llama-stack/pull/1573
- https://github.com/meta-llama/llama-stack/pull/1625
- https://github.com/meta-llama/llama-stack/pull/1656
- https://github.com/meta-llama/llama-stack/pull/1657
- https://github.com/meta-llama/llama-stack/pull/1658
- https://github.com/meta-llama/llama-stack/pull/1659
- https://github.com/meta-llama/llama-stack/pull/1660

**Client SDK**
- https://github.com/meta-llama/llama-stack-client-python/pull/203

**CI**
- 1391130488
<img width="1042" alt="image"
src="https://github.com/user-attachments/assets/69636067-376d-436b-9204-896e2dd490ca"
/>
-- the test_rag_agent_with_attachments is flaky and not related to this
PR

## Doc
<img width="789" alt="image"
src="https://github.com/user-attachments/assets/b88390f3-73d6-4483-b09a-a192064e32d9"
/>


## Client Usage
```python
client.datasets.register(
    source={
        "type": "uri",
        "uri": "lsfs://mydata.jsonl",
    },
    schema="jsonl_messages",
    # optional 
    dataset_id="my_first_train_data"
)

# quick prototype debugging
client.datasets.register(
    data_reference={
        "type": "rows",
        "rows": [
                "messages": [...],
        ],
    },
    schema="jsonl_messages",
)
```

## Test Plan
- CI:
1387805545

```
LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/datasets/test_datasets.py
```

```
LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/scoring/test_scoring.py
```

```
pytest -v -s --nbval-lax ./docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb
```
2025-03-17 16:55:45 -07:00
Sébastien Han
24fd06879e
refactor: simplify command execution and remove PTY handling (#1641)
# What does this PR do?

A PTY is unnecessary for interactive mode since `subprocess.run()`
already inherits the calling terminal’s stdin, stdout, and stderr,
allowing natural interaction. Using a PTY can introduce unwanted side
effects like buffering issues and inconsistent signal handling. Standard
input/output is sufficient for most interactive programs.

This commit simplifies the command execution by:

1. Removing PTY-based execution in favor of direct subprocess handling
2. Consolidating command execution into a single run_command function
3. Improving error handling with specific subprocess error types
4. Adding proper type hints and documentation
5. Maintaining Ctrl+C handling for graceful interruption

## Test Plan

```
llama stack run
```

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-03-17 15:03:14 -07:00
Nathan Weinberg
e48af78b76
fix: add shutdown method for ProviderImpl (#1670)
# What does this PR do?
Currently there is no shutdown method implemented for the `ProviderImpl`
class

This leads to the following warning
```shell
INFO:     Waiting for application shutdown.
INFO     2025-03-17 17:25:13,280 __main__:145 server: Shutting down                                                     
INFO     2025-03-17 17:25:13,282 __main__:129 server: Shutting down ModelsRoutingTable                                  
INFO     2025-03-17 17:25:13,284 __main__:129 server: Shutting down DatasetsRoutingTable                                
INFO     2025-03-17 17:25:13,286 __main__:129 server: Shutting down DatasetIORouter                                     
INFO     2025-03-17 17:25:13,287 __main__:129 server: Shutting down TelemetryAdapter                                    
INFO     2025-03-17 17:25:13,288 __main__:129 server: Shutting down InferenceRouter                                     
INFO     2025-03-17 17:25:13,290 __main__:129 server: Shutting down ShieldsRoutingTable                                 
INFO     2025-03-17 17:25:13,291 __main__:129 server: Shutting down SafetyRouter                                        
INFO     2025-03-17 17:25:13,292 __main__:129 server: Shutting down VectorDBsRoutingTable                               
INFO     2025-03-17 17:25:13,293 __main__:129 server: Shutting down VectorIORouter                                      
INFO     2025-03-17 17:25:13,294 __main__:129 server: Shutting down ToolGroupsRoutingTable                              
INFO     2025-03-17 17:25:13,295 __main__:129 server: Shutting down ToolRuntimeRouter                                   
INFO     2025-03-17 17:25:13,296 __main__:129 server: Shutting down MetaReferenceAgentsImpl                             
INFO     2025-03-17 17:25:13,297 __main__:129 server: Shutting down ScoringFunctionsRoutingTable                        
INFO     2025-03-17 17:25:13,298 __main__:129 server: Shutting down ScoringRouter                                       
INFO     2025-03-17 17:25:13,299 __main__:129 server: Shutting down BenchmarksRoutingTable                              
INFO     2025-03-17 17:25:13,300 __main__:129 server: Shutting down EvalRouter                                          
INFO     2025-03-17 17:25:13,301 __main__:129 server: Shutting down DistributionInspectImpl                             
INFO     2025-03-17 17:25:13,303 __main__:129 server: Shutting down ProviderImpl                                        
WARNING  2025-03-17 17:25:13,304 __main__:134 server: No shutdown method for ProviderImpl                               
INFO:     Application shutdown complete.
INFO:     Finished server process [1]
```

## Test Plan
Start a server and shut it down

Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
2025-03-17 14:55:40 -07:00