## What does this PR do?
This is a long-pending change and particularly important to get done
now.
Specifically:
- we cannot "localize" (aka download) any URLs from media attachments
anywhere near our modeling code. it must be done within llama-stack.
- `PIL.Image` is infesting all our APIs via `ImageMedia ->
InterleavedTextMedia` and that cannot be right at all. Anything in the
API surface must be "naturally serializable". We need a standard `{
type: "image", image_url: "<...>" }` which is more extensible
- `UserMessage`, `SystemMessage`, etc. are moved completely to
llama-stack from the llama-models repository.
See https://github.com/meta-llama/llama-models/pull/244 for the
corresponding PR in llama-models.
## Test Plan
```bash
cd llama_stack/providers/tests
pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py
pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py
pytest -s -v -k chroma memory/test_memory.py \
--env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar
pytest -s -v -k fireworks agents/test_agents.py \
--safety-shield=meta-llama/Llama-Guard-3-8B \
--inference-model=meta-llama/Llama-3.1-8B-Instruct
```
Updated the client sdk (see PR ...), installed the SDK in the same
environment and then ran the SDK tests:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py
LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py
# this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly
INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py
```
This PR does the following:
1) adds the ability to generate embeddings in all supported inference
providers.
2) Moves all the memory providers to use the inference API and improved
the memory tests to setup the inference stack correctly and use the
embedding models
This is a merge from #589 and #598
# What does this PR do?
This PR fixes some of the issues with our telemetry setup to enable logs
to be delivered to opentelemetry and jaeger. Main fixes
1) Updates the open telemetry provider to use the latest oltp exports
instead of deprected ones.
2) Adds a tracing middleware, which injects traces into each HTTP
request that the server recieves and this is going to be the root trace.
Previously, we did this in the create_dynamic_route method, which is
actually not the actual exectuion flow, but more of a config and this
causes the traces to end prematurely. Through middleware, we plugin the
trace start and end at the right location.
3) We manage our own methods to create traces and spans and this does
not fit well with Opentelemetry SDK since it does not support provide a
way to take in traces and spans that are already created. it expects us
to use the SDK to create them. For now, I have a hacky approach of just
maintaining a map from our internal telemetry objects to the open
telemetry specfic ones. This is not the ideal solution. I will explore
other ways to get around this issue. for now, to have something that
works, i am going to keep this as is.
Addresses: #509
faiss serialize index returns a np object, that we first need to save to
buffer and then write to sqllite. Since we are using json, we need to
base64 encode the data.
Same in the read path, we base64 decode and read into np array and then
call into deserialize index.
tests:
torchrun $CONDA_PREFIX/bin/pytest -v -s -m "faiss"
llama_stack/providers/tests/memory/test_memory.py
Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
The semantics of an Update on resources is very tricky to reason about
especially for memory banks and models. The best way to go forward here
is for the user to unregister and register a new resource. We don't have
a compelling reason to support update APIs.
Tests:
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m
"chroma" --env CHROMA_HOST=localhost --env CHROMA_PORT=8000
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m
"pgvector" --env PGVECTOR_DB=postgres --env PGVECTOR_USER=postgres --env
PGVECTOR_PASSWORD=mysecretpassword --env PGVECTOR_HOST=0.0.0.0
$CONDA_PREFIX/bin/pytest -v -s -m "ollama"
llama_stack/providers/tests/inference/test_model_registration.py
---------
Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>