# What does this PR do?
This commit adds a new authentication system to the Llama Stack server
with support for Kubernetes and custom authentication providers. Key
changes include:
- Implemented KubernetesAuthProvider for validating Kubernetes service
account tokens
- Implemented CustomAuthProvider for validating tokens against external
endpoints - this is the same code that was already present.
- Added test for Kubernetes
- Updated server configuration to support authentication settings
- Added documentation for authentication configuration and usage
The authentication system supports:
- Bearer token validation
- Kubernetes service account token validation
- Custom authentication endpoints
## Test Plan
Setup a Kube cluster using Kind or Minikube.
Run a server with:
```
server:
port: 8321
auth:
provider_type: kubernetes
config:
api_server_url: http://url
ca_cert_path: path/to/cert (optional)
```
Run:
```
curl -s -L -H "Authorization: Bearer $(kubectl create token my-user)" http://127.0.0.1:8321/v1/providers
```
Or replace "my-user" with your service account.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Implemetation of NeMO Datastore register, unregister API.
Open Issues:
- provider_id gets set to `localfs` in client.datasets.register() as it
is specified in routing_tables.py: DatasetsRoutingTable
see: #1860
Currently I have passed `"provider_id":"nvidia"` in metadata and have
parsed that in `DatasetsRoutingTable`
(Not the best approach, but just a quick workaround to make it work for
now.)
## Test Plan
- Unit test cases: `pytest
tests/unit/providers/nvidia/test_datastore.py`
```bash
========================================================== test session starts ===========================================================
platform linux -- Python 3.10.0, pytest-8.3.5, pluggy-1.5.0
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: anyio-4.9.0, asyncio-0.26.0, nbval-0.11.0, metadata-3.1.1, html-4.1.1, cov-6.1.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function
collected 2 items
tests/unit/providers/nvidia/test_datastore.py .. [100%]
============================================================ warnings summary ============================================================
====================================================== 2 passed, 1 warning in 0.84s ======================================================
```
cc: @dglogo, @mattf, @yanxi0830
This resolves a new critical severity on h11. See
https://access.redhat.com/security/cve/cve-2025-43859. We should
consider releasing a new patch with this fix.
This was updated via:
```
uv add "h11>=0.16.0"
uv export --frozen --no-hashes --no-emit-project --output-file=requirements.txt
```
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
# What does this PR do?
IBM watsonx ai added as the inference [#1741
](https://github.com/meta-llama/llama-stack/issues/1741)
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
---------
Co-authored-by: Sajikumar JS <sajikumar.js@ibm.com>
# What does this PR do?
Previously, when a streaming client would disconnect before we were
finished streaming the entire response, an error like the below would
get raised from the `sse_generator` function in
`llama_stack/distribution/server/server.py`:
```
AttributeError: 'coroutine' object has no attribute 'aclose'. Did you mean: 'close'?
```
This was because we were calling `aclose` on a coroutine instead of the
awaited value from that coroutine. This change fixes that, so that we
save off the awaited value and then can call `aclose` on it if we
encounter an `asyncio.CancelledError`, like we see when a client
disconnects before we're finished streaming.
The other changes in here are to add a simple set of tests for the happy
path of our SSE streaming and this client disconnect path.
That unfortunately requires adding one more dependency into our unit
test section of pyproject.toml since `server.py` requires loading some
of the telemetry code for me to test this functionality.
## Test Plan
I wrote the tests in `tests/unit/server/test_sse.py` first, verified the
client disconnected test failed before my change, and that it passed
afterwards.
```
python -m pytest -s -v tests/unit/server/test_sse.py
```
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
This stubs in some OpenAI server-side compatibility with three new
endpoints:
/v1/openai/v1/models
/v1/openai/v1/completions
/v1/openai/v1/chat/completions
This gives common inference apps using OpenAI clients the ability to
talk to Llama Stack using an endpoint like
http://localhost:8321/v1/openai/v1 .
The two "v1" instances in there isn't awesome, but the thinking is that
Llama Stack's API is v1 and then our OpenAI compatibility layer is
compatible with OpenAI V1. And, some OpenAI clients implicitly assume
the URL ends with "v1", so this gives maximum compatibility.
The openai models endpoint is implemented in the routing layer, and just
returns all the models Llama Stack knows about.
The following providers should be working with the new OpenAI
completions and chat/completions API:
* remote::anthropic (untested)
* remote::cerebras-openai-compat (untested)
* remote::fireworks (tested)
* remote::fireworks-openai-compat (untested)
* remote::gemini (untested)
* remote::groq-openai-compat (untested)
* remote::nvidia (tested)
* remote::ollama (tested)
* remote::openai (untested)
* remote::passthrough (untested)
* remote::sambanova-openai-compat (untested)
* remote::together (tested)
* remote::together-openai-compat (untested)
* remote::vllm (tested)
The goal to support this for every inference provider - proxying
directly to the provider's OpenAI endpoint for OpenAI-compatible
providers. For providers that don't have an OpenAI-compatible API, we'll
add a mixin to translate incoming OpenAI requests to Llama Stack
inference requests and translate the Llama Stack inference responses to
OpenAI responses.
This is related to #1817 but is a bit larger in scope than just chat
completions, as I have real use-cases that need the older completions
API as well.
## Test Plan
### vLLM
```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```
### ollama
```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```
## Documentation
Run a Llama Stack distribution that uses one of the providers mentioned
in the list above. Then, use your favorite OpenAI client to send
completion or chat completion requests with the base_url set to
http://localhost:8321/v1/openai/v1 . Replace "localhost:8321" with the
host and port of your Llama Stack server, if different.
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
* Manage UI deps in pyproject
* Use a new "ui" dep group to pull the deps with "uv"
* Simplify the run command
* Bump versions in requirements.txt
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Move around bits. This makes the copies from llama-models _much_ easier
to maintain and ensures we don't entangle meta-reference specific
tidbits into llama-models code even by accident.
Also, kills the meta-reference-quantized-gpu distro and rolls
quantization deps into meta-reference-gpu.
## Test Plan
```
LLAMA_MODELS_DEBUG=1 \
with-proxy llama stack run meta-reference-gpu \
--env INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct \
--env INFERENCE_CHECKPOINT_DIR=<DIR> \
--env MODEL_PARALLEL_SIZE=4 \
--env QUANTIZATION_TYPE=fp8_mixed
```
Start a server with and without quantization. Point integration tests to
it using:
```
pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config http://localhost:8321 --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
# What does this PR do?
- **chore: mypy for strong_typing**
- **chore: mypy for remote::vllm**
- **chore: mypy for remote::ollama**
- **chore: mypy for providers.datatype**
---------
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Re-enable isort enforcement.
It was disabled in 1a73f8305b, probably by
mistake.
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Enable mypy pydantic plugin.
Since the project heavily relies on pydantic models, it's probably wise
to enable the plugin to avoid some potential spurious violation warnings
the further we expand mypy coverage for the code base.
It should be generally risk-free to enable the plugin for the repo.
Some info on what plugin brings to the table:
https://docs.pydantic.dev/latest/integrations/mypy/#mypy-plugin-capabilities
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
This PR adds support for NVIDIA's NeMo Customizer API to the Llama Stack
post-training module. The integration enables users to fine-tune models
using NVIDIA's cloud-based customization service through a consistent
Llama Stack interface.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
Yet to be done
Things pending under this PR:
- [x] Integration of fine-tuned model(new checkpoint) for inference with
nvidia llm distribution
- [x] distribution integration of API
- [x] Add test cases for customizer(In Progress)
- [x] Documentation
```
LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/post_training/test_supervised_fine_tuning.py
============================================================================================================================================================================ test session starts =============================================================================================================================================================================
platform linux -- Python 3.10.0, pytest-8.3.4, pluggy-1.5.0 -- /home/ubuntu/llama-stack/.venv/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.0', 'Platform': 'Linux-6.8.0-1021-gcp-x86_64-with-glibc2.35', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'nbval': '0.11.0', 'metadata': '3.1.1', 'anyio': '4.8.0', 'html': '4.1.1', 'asyncio': '0.25.3'}}
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: nbval-0.11.0, metadata-3.1.1, anyio-4.8.0, html-4.1.1, asyncio-0.25.3
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 2 items
tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_post_training_provider_registration[txt=8B] PASSED [ 50%]
tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_list_training_jobs[txt=8B] PASSED [100%]
======================================================================================================================================================================== 2 passed, 1 warning in 0.10s ========================================================================================================================================================================
```
cc: @mattf @dglogo @sumitb
---------
Co-authored-by: Ubuntu <ubuntu@llama-stack-customizer-dev-inst-2tx95fyisatvlic4we8hidx5tfj.us-central1-a.c.brevdevprod.internal>
# What does this PR do?
Clean up mypy violations for inline::{telemetry,tool_runtime,vector_io}.
This also makes API accept a tool call result without any content (like
RAG tool already may produce).
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Fixes a bunch of violations.
Note: this patch touches all files but post_training.py that will be
significantly changed by #1437, hence leaving it out of the picture for
now.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
Testing with https://github.com/meta-llama/llama-stack/pull/1543
Also checked that GPU training works with the change:
```
INFO: ::1:53316 - "POST /v1/post-training/supervised-fine-tune HTTP/1.1" 200 OK
INFO: ::1:53316 - "GET /v1/post-training/job/status?job_uuid=test-jobb5ca2d84-d541-42f8-883b-762828b4c0e7 HTTP/1.1" 200 OK
INFO: ::1:53316 - "GET /v1/post-training/job/artifacts?job_uuid=test-jobb5ca2d84-d541-42f8-883b-762828b4c0e7 HTTP/1.1" 200 OK
21:24:01.161 [END] /v1/post-training/supervised-fine-tune [StatusCode.OK] (32526.75ms)
21:23:28.769 [DEBUG] Setting manual seed to local seed 3918872849. Local seed is seed + rank = 3918872849 + 0
21:23:28.996 [INFO] Identified model_type = Llama3_2. Ignoring output.weight in checkpoint in favor of the tok_embedding.weight tied weights.
21:23:29.933 [INFO] Memory stats after model init:
GPU peak memory allocation: 6.05 GiB
GPU peak memory reserved: 6.10 GiB
GPU peak memory active: 6.05 GiB
21:23:29.934 [INFO] Model is initialized with precision torch.bfloat16.
21:23:30.115 [INFO] Tokenizer is initialized.
21:23:30.118 [INFO] Optimizer is initialized.
21:23:30.119 [INFO] Loss is initialized.
21:23:30.896 [INFO] Dataset and Sampler are initialized.
21:23:30.898 [INFO] Learning rate scheduler is initialized.
21:23:31.618 [INFO] Memory stats after model init:
GPU peak memory allocation: 6.24 GiB
GPU peak memory reserved: 6.30 GiB
GPU peak memory active: 6.24 GiB
21:23:31.620 [INFO] Starting checkpoint save...
21:23:59.428 [INFO] Model checkpoint of size 6.43 GB saved to /home/ec2-user/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/consolidated.00.pth
21:23:59.445 [INFO] Adapter checkpoint of size 0.00 GB saved to /home/ec2-user/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/adapter/adapter.pth
```
[//]: # (## Documentation)
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Removed local execution option from the remote Qdrant provider and
introduced an explicit inline provider for the embedded execution.
Updated the ollama template to include this option: this part can be
reverted in case we don't want to have two default `vector_io`
providers.
(Closes#1082)
## Test Plan
Build and run an ollama distro:
```bash
llama stack build --template ollama --image-type conda
llama stack run --image-type conda ollama
```
Run one of the sample ingestionapplicatinos like
[rag_with_vector_db.py](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/rag_with_vector_db.py),
but replace this line:
```py
selected_vector_provider = vector_providers[0]
```
with the following, to use the `qdrant` provider:
```py
selected_vector_provider = vector_providers[1]
```
After running the test code, verify the timestamp of the Qdrant store:
```bash
% ls -ltr ~/.llama/distributions/ollama/qdrant.db/collection/test_vector_db_*
total 784
-rw-r--r--@ 1 dmartino staff 401408 Feb 26 10:07 storage.sqlite
```
[//]: # (## Documentation)
---------
Signed-off-by: Daniele Martinoli <dmartino@redhat.com>
Co-authored-by: Francisco Arceo <farceo@redhat.com>
# What does this PR do?
Enable ruff for scripts.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Updated all instances of datetime.now() to use timezone.utc for
consistency in handling time across different systems. This ensures that
timestamps are always in Coordinated Universal Time (UTC), avoiding
issues with time zone discrepancies and promoting uniformity in
time-related data.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
currently the `inspect` API for providers is really a `list` API. Create
a new `providers` API which has a GET `providers/{provider_id}` inspect
API
which returns "user friendly" configuration to the end user. Also add a
GET `/providers` endpoint which returns the list of providers as
`inspect/providers` does today.
This API follows CRUD and is more intuitive/RESTful.
This work is part of the RFC at
https://github.com/meta-llama/llama-stack/pull/1359
sensitive fields are redacted using `redact_sensetive_fields` on the
server side before returning a response:
<img width="456" alt="Screenshot 2025-03-13 at 4 40 21 PM"
src="https://github.com/user-attachments/assets/9465c221-2a26-42f8-a08a-6ac4a9fecce8"
/>
## Test Plan
using https://github.com/meta-llama/llama-stack-client-python/pull/181 a
user is able to to run the following:
`llama stack build --template ollama --image-type venv`
`llama stack run --image-type venv
~/.llama/distributions/ollama/ollama-run.yaml`
`llama-stack-client providers inspect ollama`
<img width="378" alt="Screenshot 2025-03-13 at 4 39 35 PM"
src="https://github.com/user-attachments/assets/8273d05d-8bc3-44c6-9e4b-ef95e48d5466"
/>
also, was able to run the new test_list integration test locally with
ollama:
<img width="1509" alt="Screenshot 2025-03-13 at 11 03 40 AM"
src="https://github.com/user-attachments/assets/9b9db166-f02f-45b0-86a4-306d85149bc8"
/>
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
Expand the mypy exclude list.
It will be easier to enable typing checks for specific modules if we
have an explicit list of violators that we can reduce over time, item by
item.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
pre-commit passes.
[//]: # (## Documentation)
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
The `test` section has been updated to include only the essential
dependencies needed for running integration tests, which are shared
across all providers. If a provider requires additional dependencies,
please add them to your environment separately. When using uv to
run your tests, you can specify extra dependencies with the
`--with` flag.
Signed-off-by: Sébastien Han <seb@redhat.com>
We removed `llama-models` as a dep which was pulling this in for us
previously. This did not get caught in the release process because the
distros we use for testing (fireworks / together) pull that in via
sentence transformers which we don't use in all distros (notably
ollama.)
See #1511
## Test Plan
Ran `llama-stack-ops/actions/test-and-cut/main.sh` with
`ONLY_TEST_DONT_CUT=1 COMMIT_ID=origin/fix_jinja2` and by making it
build the ollama docker. Ran the docker to ensure it does not error out
with jinja2 dependency error. (Unfortunately there is another error with
sqlite_vec there.)
# What does this PR do?
This PR allows for unit test code coverage % to be reported in PR
builds. Currently, today's output tells the end user which tests passed
and which tests failed:
<img width="744" alt="Screenshot 2025-03-10 at 9 44 28 AM"
src="https://github.com/user-attachments/assets/40b1a578-951f-4b74-8a37-a39c039b1d7e"
/>
If a contributor is creating a new module within Llama Stack and starts
writing unit tests for that module, it might be difficult for Llama
Stack maintainers to immediately determine the code coverage percentage
for that new module.
To allow for code coverage reporting in the CI, we simply need to
install `pytest-cov` so we can use the `--cov` flag with the existing
`pytest` command.
Ideally, it would be nicer to have a bot report code coverage, but this
PR can be a temporary solution.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
I ran these changes locally:
<img width="1455" alt="Screenshot 2025-03-10 at 10 01 53 AM"
src="https://github.com/user-attachments/assets/dfd765c6-5979-42a3-b899-7713a3f202e6"
/>
PR build to confirm the expected behavior:
<img width="1326" alt="Screenshot 2025-03-10 at 12 47 36 PM"
src="https://github.com/user-attachments/assets/fe94f1e6-fbb5-4e57-9902-197502c50621"
/>
[//]: # (## Documentation)
Signed-off-by: Courtney Pacheco <6019922+courtneypacheco@users.noreply.github.com>
## What does this PR do?
Use 0.1.5.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
This commit introduces a new logging system that allows loggers to be
assigned
a category while retaining the logger name based on the file name. The
log
format includes both the logger name and the category, producing output
like:
```
INFO 2025-03-03 21:44:11,323 llama_stack.distribution.stack:103 [core]: Tool_groups: builtin::websearch served by
tavily-search
```
Key features include:
- Category-based logging: Loggers can be assigned a category (e.g.,
"core", "server") when programming. The logger can be loaded like
this: `logger = get_logger(name=__name__, category="server")`
- Environment variable control: Log levels can be configured
per-category using the
`LLAMA_STACK_LOGGING` environment variable. For example:
`LLAMA_STACK_LOGGING="server=DEBUG;core=debug"` enables DEBUG level for
the "server"
and "core" categories.
- `LLAMA_STACK_LOGGING="all=debug"` sets DEBUG level globally for all
categories and
third-party libraries.
This provides fine-grained control over logging levels while maintaining
a clean and
informative log format.
The formatter uses the rich library which provides nice colors better
stack traces like so:
```
ERROR 2025-03-03 21:49:37,124 asyncio:1758 [uncategorized]: unhandled exception during asyncio.run() shutdown
task: <Task finished name='Task-16' coro=<handle_signal.<locals>.shutdown() done, defined at
/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py:146>
exception=UnboundLocalError("local variable 'loop' referenced before assignment")>
╭────────────────────────────────────── Traceback (most recent call last) ───────────────────────────────────────╮
│ /Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py:178 in shutdown │
│ │
│ 175 │ │ except asyncio.CancelledError: │
│ 176 │ │ │ pass │
│ 177 │ │ finally: │
│ ❱ 178 │ │ │ loop.stop() │
│ 179 │ │
│ 180 │ loop = asyncio.get_running_loop() │
│ 181 │ loop.create_task(shutdown()) │
╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
UnboundLocalError: local variable 'loop' referenced before assignment
```
Co-authored-by: Ashwin Bharambe <@ashwinb>
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
```
python -m llama_stack.distribution.server.server --yaml-config ./llama_stack/templates/ollama/run.yaml
INFO 2025-03-03 21:55:35,918 __main__:365 [server]: Using config file: llama_stack/templates/ollama/run.yaml
INFO 2025-03-03 21:55:35,925 __main__:378 [server]: Run configuration:
INFO 2025-03-03 21:55:35,928 __main__:380 [server]: apis:
- agents
```
[//]: # (## Documentation)
---------
Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
The commit addresses the Ruff warning B008 by refactoring the code to
avoid calling SamplingParams() directly in function argument defaults.
Instead, it either uses Field(default_factory=SamplingParams) for
Pydantic models or sets the default to None and instantiates
SamplingParams inside the function body when the argument is None.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
- Modularized `resolve_impls` by extracting helper functions for
validation, sorting, and instantiation.
- Improved readability by introducing `validate_and_prepare_providers`,
`sort_providers_by_dependency`, and `instantiate_providers`.
- Enhanced type safety with explicit type hints (`Tuple`, `Dict`, `Set`,
etc.).
- Fixed potential issues with provider module imports and added error
handling.
- Updated `pyproject.toml` to enforce type checking on `resolver.py`
using `mypy`.
Signed-off-by: Sébastien Han <seb@redhat.com>
- [//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
Run the server.
[//]: # (## Documentation)
Signed-off-by: Sébastien Han <seb@redhat.com>
A self-respecting server needs good observability which starts with
configurable logging. Llama Stack had little until now. This PR adds a
`logcat` facility towards that. Callsites look like:
```python
logcat.debug("inference", f"params to ollama: {params}")
```
- the first parameter is a category. there is a static list of
categories in `llama_stack/logcat.py`
- each category can be associated with a log-level which can be
configured via the `LLAMA_STACK_LOGGING` env var.
- a value `LLAMA_STACK_LOGGING=inference=debug;server=info"` does the
obvious thing. there is a special key called `all` which is an alias for
all categories
## Test Plan
Ran with `LLAMA_STACK_LOGGING="all=debug" llama stack run fireworks` and
saw the following:

Hit it with a client-sdk test case and saw this:

# What does this PR do?
- Fixed type hinting and missing imports across multiple modules.
- Improved compatibility by using `TYPE_CHECKING` for conditional
imports.
- Updated `pyproject.toml` to enforce stricter linting.
Signed-off-by: Sébastien Han <seb@redhat.com>
Signed-off-by: Sébastien Han <seb@redhat.com>