# What does this PR do?
We are dropping configuration via CLI flag almost entirely. If any
server configuration has to be tweak it must be done through the server
section in the run.yaml.
This is unfortunately a breaking change for whover was using:
* `--tls-*`
* `--disable_ipv6`
`--port` stays around and get a special treatment since we believe, it's
common for user dev to change port for quick experimentations.
Closes: https://github.com/meta-llama/llama-stack/issues/1076
## Test Plan
Simply do `llama stack run <config>` nothing should break :)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
The builtin implementation of code interpreter is not robust and has a
really weak sandboxing shell (the `bubblewrap` container). Given the
availability of better MCP code interpreter servers coming up, we should
use them instead of baking an implementation into the Stack and
expanding the vulnerability surface to the rest of the Stack.
This PR only does the removal. We will add examples with how to
integrate with MCPs in subsequent ones.
## Test Plan
Existing tests.
# What does this PR do?
Replaced `${env.OTEL_SERVICE_NAME:\u200B}` and similar variants with
properly formatted `${env.OTEL_SERVICE_NAME:}` across all YAML templates
and TelemetryConfig. This prevents silent parsing issues and ensures
consistent environment variable resolution.
Slipped in https://github.com/meta-llama/llama-stack/pull/2058
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
The telemetry provider configs is the only one who leverages the env var
`SQLITE_DB_PATH` for pointing to persistent data in the respective
templates, whereas usually `SQLITE_STORE_DIR` is used.
This PR modifies the `sqlite_db_path` in various telemetry configuration
files to use the environment variable `SQLITE_STORE_DIR` instead of
`SQLITE_DB_PATH`. This change ensures that _only_ the SQLITE_STORE_DIR
needs to be set to point to a different persistence location for
providers.
All references to `SQLITE_DB_PATH` have been removed.
Another improvement could be to move `sqlite_db_path` to `db_path` in
the telemetry provider config, to align with the other provider
configurations. That could be done by another PR (if wanted).
# What does this PR do?
## Test Plan
export MODEL=accounts/fireworks/models/llama4-scout-instruct-basic;
LLAMA_STACK_CONFIG=verification pytest -s -v tests/integration/inference
--vision-model $MODEL --text-model $MODEL
# What does this PR do?
## Test Plan
LLAMA_STACK_CONFIG=dev pytest -s -v
tests/integration/agents/test_agents.py::test_custom_tool
--safety-shield meta-llama/Llama-Guard-3-8B --text-model
accounts/fireworks/models/llama-v3p1-8b-instruct
and verify trace in jaeger UI
https://llama-stack.readthedocs.io/en/latest/building_applications/telemetry.html#
# What does this PR do?
remove Llama-3.2-1B-Instruct for fireworks as its no longer appears to
be hosted on website.
## Test Plan
python distro_codegen.py
Each model known to the system has two identifiers:
- the `provider_resource_id` (what the provider calls it) -- e.g.,
`accounts/fireworks/models/llama-v3p1-8b-instruct`
- the `identifier` (`model_id`) under which it is registered and gets
routed to the appropriate provider.
We have so far used the HuggingFace repo alias as the standardized
identifier you can use to refer to the model. So in the above example,
we'd use `meta-llama/Llama-3.1-8B-Instruct` as the name under which it
gets registered. This makes it convenient for users to refer to these
models across providers.
However, we forgot to register the _actual_ provider model ID also. You
should be able to route via `provider_resource_id` also, of course.
This change fixes this (somewhat grave) omission.
*Note*: this change is additive -- more aliases work now compared to
before.
## Test Plan
Run the following for distro=(ollama fireworks together)
```
LLAMA_STACK_CONFIG=$distro \
pytest -s -v tests/client-sdk/inference/test_text_inference.py \
--inference-model=meta-llama/Llama-3.1-8B-Instruct --vision-inference-model=""
```
# What does this PR do?
This PR introduces more non-llama model support to llama stack.
Providers introduced: openai, anthropic and gemini. All of these
providers use essentially the same piece of code -- the implementation
works via the `litellm` library.
We will expose only specific models for providers we enable making sure
they all work well and pass tests. This setup (instead of automatically
enabling _all_ providers and models allowed by LiteLLM) ensures we can
also perform any needed prompt tuning on a per-model basis as needed
(just like we do it for llama models.)
## Test Plan
```bash
#!/bin/bash
args=("$@")
for model in openai/gpt-4o anthropic/claude-3-5-sonnet-latest gemini/gemini-1.5-flash; do
LLAMA_STACK_CONFIG=dev pytest -s -v tests/client-sdk/inference/test_text_inference.py \
--embedding-model=all-MiniLM-L6-v2 \
--vision-inference-model="" \
--inference-model=$model "${args[@]}"
done
```