Commit graph

82 commits

Author SHA1 Message Date
Xi Yan
0fefd4390a
Fix tgi adapter (#796)
# What does this PR do?

- Fix TGI adapter

## Test Plan

<img width="851" alt="image"
src="https://github.com/user-attachments/assets/0084cbc6-6713-4079-b87b-0befd9aca0b0"
/>

- most inference working
- agent test failure due to model outputs

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-16 17:44:12 -08:00
Xi Yan
e239280932
fireworks add completion logprobs adapter (#778)
# What does this PR do?

- add completion log probs for fireworks

## Test Plan

<img width="849" alt="image"
src="https://github.com/user-attachments/assets/5aa1f27f-02a6-422c-8478-94dd1e345342"
/>


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-16 10:37:07 -08:00
Xi Yan
b76bef169c
fix nvidia inference provider (#781)
# What does this PR do?

- fixes to nvidia inference provider to account for strategy update
- update nvidia templates

## Test Plan

```
llama stack run ./llama_stack/templates/nvidia/run.yaml --port 5000

LLAMA_STACK_BASE_URL="http://localhost:5000" pytest -v tests/client-sdk/inference/test_inference.py --html=report.html --self-contained-html
```
<img width="1288" alt="image"
src="https://github.com/user-attachments/assets/d20f9aea-525e-47de-a5be-586e022e0d55"
/>

**NOTE**
- vision inference broken
- tool calling broken
- /completion broken

cc @mattf @cdgamarose-nv  for improving NVIDIA inference adapter

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-15 18:49:36 -08:00
cdgamarose-nv
b3202bcf77
add nvidia distribution (#565)
# What does this PR do?

adds nvidia template for creating a distribution using inference adapter
for NVIDIA NIMs.

## Test Plan

Please describe:
Build llama stack distribution for nvidia using the template, docker and
conda.
```bash
(.venv) local-cdgamarose@a4u8g-0006:~/llama-stack$ llama-stack-client configure --endpoint http://localhost:5000
Done! You can now use the Llama Stack Client CLI with endpoint http://localhost:5000
(.venv) local-cdgamarose@a4u8g-0006:~/llama-stack$ llama-stack-client models list
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓
┃ identifier                       ┃ provider_id ┃ provider_resource_id       ┃ metadata ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━┩
│ Llama3.1-8B-Instruct             │ nvidia      │ meta/llama-3.1-8b-instruct │ {}       │
│ meta-llama/Llama-3.2-3B-Instruct │ nvidia      │ meta/llama-3.2-3b-instruct │ {}       │
└──────────────────────────────────┴─────────────┴────────────────────────────┴──────────┘
(.venv) local-cdgamarose@a4u8g-0006:~/llama-stack$ llama-stack-client inference chat-completion --message "hello, write me a 2 sentence poem"
ChatCompletionResponse(
    completion_message=CompletionMessage(
        content='Here is a 2 sentence poem:\n\nThe sun sets slow and paints the sky, \nA gentle hue of pink that makes me sigh.',
        role='assistant',
        stop_reason='end_of_turn',
        tool_calls=[]
    ),
    logprobs=None
)
```

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [x] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.

---------

Co-authored-by: Matthew Farrellee <matt@cs.wisc.edu>
2025-01-15 14:04:43 -08:00
Hardik Shah
a51c8b4efc
Convert SamplingParams.strategy to a union (#767)
# What does this PR do?

Cleans up how we provide sampling params. Earlier, strategy was an enum
and all params (top_p, temperature, top_k) across all strategies were
grouped. We now have a strategy union object with each strategy (greedy,
top_p, top_k) having its corresponding params.
Earlier, 
```
class SamplingParams: 
    strategy: enum ()
    top_p, temperature, top_k and other params
```
However, the `strategy` field was not being used in any providers making
it confusing to know the exact sampling behavior purely based on the
params since you could pass temperature, top_p, top_k and how the
provider would interpret those would not be clear.

Hence we introduced -- a union where the strategy and relevant params
are all clubbed together to avoid this confusion.

Have updated all providers, tests, notebooks, readme and otehr places
where sampling params was being used to use the new format.
   

## Test Plan
`pytest llama_stack/providers/tests/inference/groq/test_groq_utils.py`
// inference on ollama, fireworks and together 
`with-proxy pytest -v -s -k "ollama"
--inference-model="meta-llama/Llama-3.1-8B-Instruct"
llama_stack/providers/tests/inference/test_text_inference.py `
// agents on fireworks 
`pytest -v -s -k 'fireworks and create_agent'
--inference-model="meta-llama/Llama-3.1-8B-Instruct"
llama_stack/providers/tests/agents/test_agents.py
--safety-shield="meta-llama/Llama-Guard-3-8B"`

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [X] Ran pre-commit to handle lint / formatting issues.
- [X] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [X] Updated relevant documentation.
- [X] Wrote necessary unit or integration tests.

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
2025-01-15 05:38:51 -08:00
Ashwin Bharambe
d9d34433fc Update spec 2025-01-13 23:16:53 -08:00
Ashwin Bharambe
9a5803a429 move all implementations to use updated type 2025-01-13 23:16:53 -08:00
Ashwin Bharambe
ee4e04804f
Rename ipython to tool (#756)
See https://github.com/meta-llama/llama-models/pull/261 for the
corresponding PR in llama-models.

Once these PRs land, you need to work `main` from llama-models (vs. from
pypi)
2025-01-13 19:11:51 -08:00
Aidan Do
fdcc74fda2
[#432] Add Groq Provider - tool calls (#630)
# What does this PR do?

Contributes to issue #432

- Adds tool calls to Groq provider
- Enables tool call integration tests

### PR Train

- https://github.com/meta-llama/llama-stack/pull/609 
- https://github.com/meta-llama/llama-stack/pull/630 👈

## Test Plan
Environment:

```shell
export GROQ_API_KEY=<api-key>

# build.yaml and run.yaml files
wget https://raw.githubusercontent.com/aidando73/llama-stack/9165502582cd7cb178bc1dcf89955b45768ab6c1/build.yaml
wget https://raw.githubusercontent.com/aidando73/llama-stack/9165502582cd7cb178bc1dcf89955b45768ab6c1/run.yaml

# Create environment if not already
conda create --prefix ./envs python=3.10
conda activate ./envs

# Build
pip install -e . && llama stack build --config ./build.yaml --image-type conda

# Activate built environment
conda activate llamastack-groq
```

<details>
<summary>Unit tests</summary>

```shell
# Setup
conda activate llamastack-groq
pytest llama_stack/providers/tests/inference/groq/test_groq_utils.py -vv -k groq -s

# Result
llama_stack/providers/tests/inference/groq/test_groq_utils.py .....................

======================================== 21 passed, 1 warning in 0.05s ========================================
```
</details>

<details>
<summary>Integration tests</summary>

```shell
# Run
conda activate llamastack-groq
pytest llama_stack/providers/tests/inference/test_text_inference.py -k groq -s

# Result
llama_stack/providers/tests/inference/test_text_inference.py .sss.s.ss.sss.s...

========================== 8 passed, 10 skipped, 180 deselected, 7 warnings in 2.73s ==========================
```
</details>

<details>
<summary>Manual</summary>

```bash
llama stack run ./run.yaml --port 5001
```

Via this Jupyter notebook:
9165502582/hello.ipynb
</details>

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [x] Updated relevant documentation. (no relevant documentation it
seems)
- [x] Wrote necessary unit or integration tests.
2025-01-13 18:17:38 -08:00
Yufei (Benny) Chen
1cc137cf9c
[Fireworks] Update model name for Fireworks (#753)
# What does this PR do?

Fix https://github.com/meta-llama/llama-stack/issues/697


## Test Plan
Run the 405b model. the full `accounts/fireworks/models/<model_id>` is
the full model name for Fireworks, the 'fireworks/<model_id>' is just a
short hand and sometimes have routing issues

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-13 15:53:57 -08:00
Dinesh Yeduguru
314806cde3
Add provider data passing for library client (#750)
# What does this PR do?

This PR adds the provider data passing for the library client and
changes the provider's api keys be unique


## Test Plan

LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-fireworks/fireworks-run.yaml"
pytest -v tests/client-sdk/agents/test_agents.py

run.yaml:
https://gist.github.com/dineshyv/0c10b5c7d0a2fb7ba4f0ecc8dcf860d1
2025-01-13 15:12:10 -08:00
Dinesh Yeduguru
8af6951106
remove conflicting default for tool prompt format in chat completion (#742)
# What does this PR do?
We are setting a default value of json for tool prompt format, which
conflicts with llama 3.2/3.3 models since they use python list. This PR
changes the defaults to None and in the code, we infer default based on
the model.

Addresses: #695 

Tests:
❯ LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v
tests/client-sdk/inference/test_inference.py -k
"test_text_chat_completion"

 pytest llama_stack/providers/tests/inference/test_prompt_adapter.py
2025-01-10 10:41:53 -08:00
Ashwin Bharambe
ffc6bd4805
Add X-LlamaStack-Client-Version, rename ProviderData -> Provider-Data (#735)
Add another header so client SDKs can identify their versions which can
be used for immediate detection of possible compatibility issues. A
semver mismatch against the wrong server should be immediately flagged
and requests should be denied.

Also change `X-LlamaStack-ProviderData` to `X-LlamaStack-Provider-Data`
since that hyphenation is better.
2025-01-09 11:51:36 -08:00
Dinesh Yeduguru
a5c57cd381
agents to use tools api (#673)
# What does this PR do?

PR #639 introduced the notion of Tools API and ability to invoke tools
through API just as any resource. This PR changes the Agents to start
using the Tools API to invoke tools. Major changes include:
1) Ability to specify tool groups with AgentConfig
2) Agent gets the corresponding tool definitions for the specified tools
and pass along to the model
3) Attachements are now named as Documents and their behavior is mostly
unchanged from user perspective
4) You can specify args that can be injected to a tool call through
Agent config. This is especially useful in case of memory tool, where
you want the tool to operate on a specific memory bank.
5) You can also register tool groups with args, which lets the agent
inject these as well into the tool call.
6) All tests have been migrated to use new tools API and fixtures
including client SDK tests
7) Telemetry just works with tools API because of our trace protocol
decorator


## Test Plan
```
pytest -s -v -k fireworks llama_stack/providers/tests/agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct

pytest -s -v -k together  llama_stack/providers/tests/tools/test_tools.py \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct

LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml" pytest -v tests/client-sdk/agents/test_agents.py
```
run.yaml:
https://gist.github.com/dineshyv/0365845ad325e1c2cab755788ccc5994

Notebook:
https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d?usp=sharing
2025-01-08 19:01:00 -08:00
Xi Yan
7a4383e4c1
add 3.3 to together inference provider (#729)
# What does this PR do?

- add llama3.3 model for together
- fix fireworks distro_codegen

```
python llama_stack/scripts/distro_codegen.py
```

## Test Plan

<img width="1132" alt="image"
src="https://github.com/user-attachments/assets/bf94b933-9200-4e73-878e-d1a95d450a88"
/>

**Tests**
```
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.3-70B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
```
<img width="1139" alt="image"
src="https://github.com/user-attachments/assets/407dc98b-8de3-4841-8cb1-75e4b5128544"
/>


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-06 15:39:41 -08:00
Aidan Do
485476c29a
Fix Groq invalid self.config reference (#719)
# What does this PR do?

Contributes towards: #432

RE: https://github.com/meta-llama/llama-stack/pull/609

I missed this one while refactoring. Fixes:

```python
Traceback (most recent call last):
  File "/Users/aidand/dev/llama-stack/llama_stack/distribution/server/server.py", line 191, in endpoint
    return await maybe_await(value)
  File "/Users/aidand/dev/llama-stack/llama_stack/distribution/server/server.py", line 155, in maybe_await
    return await value
  File "/Users/aidand/dev/llama-stack/llama_stack/providers/utils/telemetry/trace_protocol.py", line 101, in async_wrapper
    result = await method(self, *args, **kwargs)
  File "/Users/aidand/dev/llama-stack/llama_stack/distribution/routers/routers.py", line 156, in chat_completion
    return await provider.chat_completion(**params)
  File "/Users/aidand/dev/llama-stack/llama_stack/providers/utils/telemetry/trace_protocol.py", line 101, in async_wrapper
    result = await method(self, *args, **kwargs)
  File "/Users/aidand/dev/llama-stack/llama_stack/providers/remote/inference/groq/groq.py", line 127, in chat_completion
    response = self._get_client().chat.completions.create(**request)
  File "/Users/aidand/dev/llama-stack/llama_stack/providers/remote/inference/groq/groq.py", line 143, in _get_client
    return Groq(api_key=self.config.api_key)
AttributeError: 'GroqInferenceAdapter' object has no attribute 'config'. Did you mean: '_config'?
```


## Test Plan

Environment:

```shell
export GROQ_API_KEY=<api-key>

# build.yaml and run.yaml files
wget https://raw.githubusercontent.com/aidando73/llama-stack/9165502582cd7cb178bc1dcf89955b45768ab6c1/build.yaml
wget https://raw.githubusercontent.com/aidando73/llama-stack/9165502582cd7cb178bc1dcf89955b45768ab6c1/run.yaml

# Create environment if not already
conda create --prefix ./envs python=3.10
conda activate ./envs

# Build
pip install -e . && llama stack build --config ./build.yaml --image-type conda

# Activate built environment
conda activate llamastack-groq
```
<details>
<summary>Manual</summary>

```bash
llama stack run ./run.yaml --port 5001
```

Via this Jupyter notebook:
9165502582/hello.ipynb
</details>


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [x] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-03 15:47:10 -08:00
Yuan Tang
04d5b9814f
Fix assert message and call to completion_request_to_prompt in remote:vllm (#709)
The current message is incorrect and model arg is not needed in
`completion_request_to_prompt`.

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-01-03 13:44:49 -08:00
Aidan Do
e1f42eb5a5
[#432] Add Groq Provider - chat completions (#609)
# What does this PR do?

Contributes towards issue (#432)

- Groq text chat completions
- Streaming
- All the sampling params that Groq supports

A lot of inspiration taken from @mattf's good work at
https://github.com/meta-llama/llama-stack/pull/355

**What this PR does not do**

- Tool calls (Future PR)
- Adding llama-guard model
- See if we can add embeddings

### PR Train

- https://github.com/meta-llama/llama-stack/pull/609 👈 
- https://github.com/meta-llama/llama-stack/pull/630


## Test Plan

<details>

<summary>Environment</summary>

```bash
export GROQ_API_KEY=<api_key>

wget https://raw.githubusercontent.com/aidando73/llama-stack/240e6e2a9c20450ffdcfbabd800a6c0291f19288/build.yaml
wget https://raw.githubusercontent.com/aidando73/llama-stack/92c9b5297f9eda6a6e901e1adbd894e169dbb278/run.yaml

# Build and run environment
pip install -e . \
&& llama stack build --config ./build.yaml --image-type conda \
&& llama stack run ./run.yaml \
  --port 5001
```

</details>

<details>

<summary>Manual tests</summary>

Using this jupyter notebook to test manually:
2140976d76/hello.ipynb

Use this code to test passing in the api key from provider_data

```
from llama_stack_client import LlamaStackClient

client = LlamaStackClient(
    base_url="http://localhost:5001",
)

response = client.inference.chat_completion(
    model_id="Llama3.2-3B-Instruct",
    messages=[
        {"role": "user", "content": "Hello, world client!"},
    ],
    # Test passing in groq_api_key from the client
    # Need to comment out the groq_api_key in the run.yaml file
    x_llama_stack_provider_data='{"groq_api_key": "<api-key>"}',
    # stream=True,
)
response
```

</details>

<details>
<summary>Integration</summary>

`pytest llama_stack/providers/tests/inference/test_text_inference.py -v
-k groq`

(run in same environment)

```
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[llama_3b-groq] PASSED                 [  6%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[llama_3b-groq] SKIPPED (Other inf...) [ 12%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[llama_3b-groq] SKIPPED [ 18%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[llama_3b-groq] PASSED [ 25%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_3b-groq] SKIPPED (Ot...) [ 31%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[llama_3b-groq] PASSED  [ 37%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[llama_3b-groq] SKIPPED [ 43%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[llama_3b-groq] SKIPPED [ 50%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[llama_8b-groq] PASSED                 [ 56%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[llama_8b-groq] SKIPPED (Other inf...) [ 62%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[llama_8b-groq] SKIPPED [ 68%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[llama_8b-groq] PASSED [ 75%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_8b-groq] SKIPPED (Ot...) [ 81%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[llama_8b-groq] PASSED  [ 87%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[llama_8b-groq] SKIPPED [ 93%]
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[llama_8b-groq] SKIPPED [100%]

======================================= 6 passed, 10 skipped, 160 deselected, 7 warnings in 2.05s ========================================
```
</details>

<details>
<summary>Unit tests</summary>

`pytest llama_stack/providers/tests/inference/groq/ -v`

```
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_sets_model PASSED            [  5%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_converts_user_message PASSED [ 10%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_converts_system_message PASSED [ 15%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_converts_completion_message PASSED [ 20%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_does_not_include_logprobs PASSED [ 25%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_does_not_include_response_format PASSED [ 30%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_does_not_include_repetition_penalty PASSED [ 35%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_stream PASSED       [ 40%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_n_is_1 PASSED                [ 45%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_if_max_tokens_is_0_then_it_is_not_included PASSED [ 50%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_max_tokens_if_set PASSED [ 55%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_temperature PASSED  [ 60%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertChatCompletionRequest::test_includes_top_p PASSED        [ 65%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertNonStreamChatCompletionResponse::test_returns_response PASSED [ 70%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertNonStreamChatCompletionResponse::test_maps_stop_to_end_of_message PASSED [ 75%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertNonStreamChatCompletionResponse::test_maps_length_to_end_of_message PASSED [ 80%]
llama_stack/providers/tests/inference/groq/test_groq_utils.py::TestConvertStreamChatCompletionResponse::test_returns_stream PASSED [ 85%]
llama_stack/providers/tests/inference/groq/test_init.py::TestGroqInit::test_raises_runtime_error_if_config_is_not_groq_config PASSED [ 90%]
llama_stack/providers/tests/inference/groq/test_init.py::TestGroqInit::test_returns_groq_adapter PASSED                            [ 95%]
llama_stack/providers/tests/inference/groq/test_init.py::TestGroqConfig::test_api_key_defaults_to_env_var PASSED                   [100%]

==================================================== 20 passed, 11 warnings in 0.08s =====================================================
```

</details>

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [x] Updated relevant documentation
- [x] Wrote necessary unit or integration tests.
2025-01-03 08:27:49 -08:00
Ashwin Bharambe
e3f187fb83 Redact sensitive information from configs when printing, etc. 2025-01-02 13:54:02 -08:00
Aidan Do
5d7b611336
Add JSON structured outputs to Ollama Provider (#680)
# What does this PR do?

Addresses issue #679

- Adds support for the response_format field for chat completions and
completions so users can get their outputs in JSON

## Test Plan

<details>

<summary>Integration tests</summary>

`pytest
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output
-k ollama -s -v`

```python
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_8b-ollama] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_3b-ollama] PASSED

================================== 2 passed, 18 deselected, 3 warnings in 41.41s ==================================
```

</details>

<details>
<summary>Manual Tests</summary>

```
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export OLLAMA_INFERENCE_MODEL=llama3.2:3b-instruct-fp16
export LLAMA_STACK_PORT=5000

ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m
llama stack build --template ollama --image-type conda
llama stack run ./run.yaml \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env OLLAMA_URL=http://localhost:11434
```

```python
    client = LlamaStackClient(base_url=f"http://localhost:{os.environ['LLAMA_STACK_PORT']}")

    MODEL_ID=meta-llama/Llama-3.2-3B-Instruct
    prompt =f"""
        Create a step by step plan to complete the task of creating a codebase that is a web server that has an API endpoint that translates text from English to French.
        You have 3 different operations you can perform. You can create a file, update a file, or delete a file.
        Limit your step by step plan to only these operations per step.
        Don't create more than 10 steps.

        Please ensure there's a README.md file in the root of the codebase that describes the codebase and how to run it.
        Please ensure there's a requirements.txt file in the root of the codebase that describes the dependencies of the codebase.
        """
    response = client.inference.chat_completion(
        model_id=MODEL_ID,
        messages=[
            {"role": "user", "content": prompt},
        ],
        sampling_params={
            "max_tokens": 200000,
        },
        response_format={
            "type": "json_schema",
            "json_schema": {
                "$schema": "http://json-schema.org/draft-07/schema#",
                "title": "Plan",
                "description": f"A plan to complete the task of creating a codebase that is a web server that has an API endpoint that translates text from English to French.",
                "type": "object",
                "properties": {
                    "steps": {
                        "type": "array",
                        "items": {
                            "type": "string"
                        }
                    }
                },
                "required": ["steps"],
                "additionalProperties": False,
            }
        },
        stream=True,
    )

    content = ""
    for chunk in response:
        if chunk.event.delta:
            print(chunk.event.delta, end="", flush=True)
            content += chunk.event.delta

    try:
        plan = json.loads(content)
        print(plan)
    except Exception as e:
        print(f"Error parsing plan into JSON: {e}")
        plan = {"steps": []}
```

Outputs:

```json
{
    "steps": [
        "Update the requirements.txt file to include the updated dependencies specified in the peer's feedback, including the Google Cloud Translation API key.",
        "Update the app.py file to address the code smells and incorporate the suggested improvements, such as handling errors and exceptions, initializing the Translator object correctly, adding input validation, using type hints and docstrings, and removing unnecessary logging statements.",
        "Create a README.md file that describes the codebase and how to run it.",
        "Ensure the README.md file is up-to-date and accurate.",
        "Update the requirements.txt file to reflect any additional dependencies specified by the peer's feedback.",
        "Add documentation for each function in the app.py file using docstrings.",
        "Implement logging statements throughout the app.py file to monitor application execution.",
        "Test the API endpoint to ensure it correctly translates text from English to French and handles errors properly.",
        "Refactor the code to follow PEP 8 style guidelines and ensure consistency in naming conventions, indentation, and spacing.",
        "Create a new folder for logs and add a logging configuration file (e.g., logconfig.json) that specifies the logging level and output destination.",
        "Deploy the web server on a production environment (e.g., AWS Elastic Beanstalk or Google Cloud Platform) to make it accessible to external users."
    ]
}
```


</details>

## Sources

- Ollama api docs:
https://github.com/ollama/ollama/blob/main/docs/api.md#generate-a-completion
- Ollama structured output docs:
https://github.com/ollama/ollama/blob/main/docs/api.md#request-structured-outputs

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [x] Wrote necessary unit or integration tests.
2025-01-02 09:05:51 -08:00
Xi Yan
3c72c034e6
[remove import *] clean up import *'s (#689)
# What does this PR do?

- as title, cleaning up `import *`'s
- upgrade tests to make them more robust to bad model outputs
- remove import *'s in llama_stack/apis/* (skip __init__ modules)
<img width="465" alt="image"
src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2"
/>

- run `sh run_openapi_generator.sh`, no types gets affected

## Test Plan

### Providers Tests

**agents**
```
pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8
```

**inference**
```bash
# meta-reference
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

# together
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py 
```

**safety**
```
pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B
```

**memory**
```
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
```

**scoring**
```
pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
```


**datasetio**
```
pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py
pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py
```


**eval**
```
pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py
```

### Client-SDK Tests
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk
```

### llama-stack-apps
```
PORT=5000
LOCALHOST=localhost

python -m examples.agents.hello $LOCALHOST $PORT
python -m examples.agents.inflation $LOCALHOST $PORT
python -m examples.agents.podcast_transcript $LOCALHOST $PORT
python -m examples.agents.rag_as_attachments $LOCALHOST $PORT
python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT
python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT
python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT

# Vision model
python -m examples.interior_design_assistant.app
python -m examples.agent_store.app $LOCALHOST $PORT
```

### CLI
```
which llama
llama model prompt-format -m Llama3.2-11B-Vision-Instruct
llama model list
llama stack list-apis
llama stack list-providers inference

llama stack build --template ollama --image-type conda
```

### Distributions Tests
**ollama**
```
llama stack build --template ollama --image-type conda
ollama run llama3.2:1b-instruct-fp16
llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
```

**fireworks**
```
llama stack build --template fireworks --image-type conda
llama stack run ./llama_stack/templates/fireworks/run.yaml
```

**together**
```
llama stack build --template together --image-type conda
llama stack run ./llama_stack/templates/together/run.yaml
```

**tgi**
```
llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-27 15:45:44 -08:00
Aidan Do
21fb92d7cf
Add 3.3 70B to Ollama inference provider (#681)
# What does this PR do?

Adds 3.3 70B support to Ollama inference provider

## Test Plan

<details>
<summary>Manual</summary>

```bash
# 42GB to download
ollama pull llama3.3:70b

ollama run llama3.3:70b --keepalive 60m

export LLAMA_STACK_PORT=5000
pip install -e . \
  && llama stack build --template ollama --image-type conda \
  && llama stack run ./distributions/ollama/run.yaml \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=Llama3.3-70B-Instruct \
  --env OLLAMA_URL=http://localhost:11434

export LLAMA_STACK_PORT=5000
llama-stack-client --endpoint http://localhost:$LLAMA_STACK_PORT \
  inference chat-completion \
  --model-id Llama3.3-70B-Instruct \
  --message "hello, what model are you?"
```

<img width="1221" alt="image"
src="https://github.com/user-attachments/assets/dcffbdd9-94c8-4d47-9f95-4ef6c3756294"
/>

</details>

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-25 22:15:58 -08:00
Dinesh Yeduguru
c8be0bf1c9
Tools API with brave and MCP providers (#639)
This PR adds a new Tools api and adds two tool runtime providers: brave
and MCP.

Test plan:
```
curl -X POST 'http://localhost:5000/alpha/toolgroups/register' \
-H 'Content-Type: application/json' \
-d '{ "tool_group_id": "simple_tool",
  "tool_group": {
    "type": "model_context_protocol",
    "endpoint": {"uri": "http://localhost:56000/sse"}
  },
  "provider_id": "model-context-protocol"
}'

 curl -X POST 'http://localhost:5000/alpha/toolgroups/register' \
-H 'Content-Type: application/json' \
-d '{
  "tool_group_id": "search", "provider_id": "brave-search",
  "tool_group": {
    "type": "user_defined",
    "tools": [
      {
        "name": "brave_search",
        "description": "A web search tool",
        "parameters": [
          {
            "name": "query",
            "parameter_type": "string",
            "description": "The query to search"
          }
        ],
        "metadata": {},
        "tool_prompt_format": "json"
      }
    ]
  }
}'

 curl -X GET http://localhost:5000/alpha/tools/list | jq .
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   662  100   662    0     0   333k      0 --:--:-- --:--:-- --:--:--  646k
[
  {
    "identifier": "brave_search",
    "provider_resource_id": "brave_search",
    "provider_id": "brave-search",
    "type": "tool",
    "tool_group": "search",
    "description": "A web search tool",
    "parameters": [
      {
        "name": "query",
        "parameter_type": "string",
        "description": "The query to search"
      }
    ],
    "metadata": {},
    "tool_prompt_format": "json"
  },
  {
    "identifier": "fetch",
    "provider_resource_id": "fetch",
    "provider_id": "model-context-protocol",
    "type": "tool",
    "tool_group": "simple_tool",
    "description": "Fetches a website and returns its content",
    "parameters": [
      {
        "name": "url",
        "parameter_type": "string",
        "description": "URL to fetch"
      }
    ],
    "metadata": {
      "endpoint": "http://localhost:56000/sse"
    },
    "tool_prompt_format": "json"
  }
]

curl -X POST 'http://localhost:5000/alpha/tool-runtime/invoke' \
-H 'Content-Type: application/json' \
-d '{
    "tool_name": "fetch",
    "args": {
        "url": "http://google.com/"
    }
}'

 curl -X POST 'http://localhost:5000/alpha/tool-runtime/invoke' \
-H 'Content-Type: application/json' -H 'X-LlamaStack-ProviderData: {"api_key": "<KEY>"}' \
-d '{
    "tool_name": "brave_search",
    "args": {
        "query": "who is meta ceo"
    }
}'
```
2024-12-19 21:25:17 -08:00
Aidan Do
17fdb47e5e
Add Llama 70B 3.3 to fireworks (#654)
# What does this PR do?

- Makes Llama 70B 3.3 available for fireworks

## Test Plan

```shell
pip install -e . \
&& llama stack build --config distributions/fireworks/build.yaml --image-type conda \
&& llama stack run distributions/fireworks/run.yaml \
  --port 5000
```

```python
        response = client.inference.chat_completion(
            model_id="Llama3.3-70B-Instruct",
            messages=[
                {"role": "user", "content": "hello world"},
            ],
        )
```

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-19 17:32:49 -08:00
cdgamarose-nv
ddf37ea467
Fixed imports for inference (#661)
# What does this PR do?

In short, provide a summary of what this PR does and why. Usually, the
relevant context should be present in a linked issue.

- [x] Addresses issue (#issue)
```
    from .nvidia import NVIDIAInferenceAdapter
  File "/localhome/local-cdgamarose/llama-stack/llama_stack/providers/remote/inference/nvidia/nvidia.py", line 37, in <module>
    from .openai_utils import (
  File "/localhome/local-cdgamarose/llama-stack/llama_stack/providers/remote/inference/nvidia/openai_utils.py", line 11, in <module>
    from llama_models.llama3.api.datatypes import (
ImportError: cannot import name 'CompletionMessage' from 'llama_models.llama3.api.datatypes' (/localhome/local-cdgamarose/.local/lib/python3.10/site-packages/llama_models/llama3/api/datatypes.py)
++ error_handler 62
```

## Test Plan
Deploy NIM using docker from
https://build.nvidia.com/meta/llama-3_1-8b-instruct?snippet_tab=Docker
```
(lsmyenv) local-cdgamarose@a4u8g-0006:~/llama-stack$ python3 -m pytest -s -v --providers inference=nvidia llama_stack/providers/tests/inference/ --env NVIDIA_BASE_URL=http://localhost:8000 -k test_completion --inference-model Llama3.1-8B-Instruct
======================================================================================== test session starts =========================================================================================
platform linux -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /localhome/local-cdgamarose/anaconda3/envs/lsmyenv/bin/python3
cachedir: .pytest_cache
rootdir: /localhome/local-cdgamarose/llama-stack
configfile: pyproject.toml
plugins: anyio-4.7.0, asyncio-0.25.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 24 items / 21 deselected / 3 selected

llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[-nvidia] Initializing NVIDIAInferenceAdapter(http://localhost:8000)...
Checking NVIDIA NIM health...
Checking NVIDIA NIM health...
PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_logprobs[-nvidia] SKIPPED (Other inference providers don't support completion() yet)
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[-nvidia] SKIPPED (This test is not quite robust)

====================================================================== 1 passed, 2 skipped, 21 deselected, 2 warnings in 1.57s =======================================================================
```

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [x] Wrote necessary unit or integration tests.
2024-12-19 14:19:36 -08:00
Ashwin Bharambe
ceadaf1840 Dont include 3B / 1B models for bedrock since they arent ondemand 2024-12-18 06:30:02 -08:00
Ashwin Bharambe
c39a3777b5 Make bedrock "just" work 2024-12-18 06:22:33 -08:00
Henry Tu
0e2a99e223
Update Cerebras from Llama 3.1 to 3.3 (#645)
# What does this PR do?

Cerebras is rolling out support for llama 3.3 70b and deprecating llama
3.1 70b. This PR updates the documentation, config, and internal mapping
to reflect this change.

cc: @ashwinb @raghotham
2024-12-17 16:28:24 -08:00
Ashwin Bharambe
b7a7caa9a8 Fix conversion to RawMessage everywhere 2024-12-17 14:00:43 -08:00
Ashwin Bharambe
8de8eb03c8
Update the "InterleavedTextMedia" type (#635)
## What does this PR do?

This is a long-pending change and particularly important to get done
now.

Specifically:
- we cannot "localize" (aka download) any URLs from media attachments
anywhere near our modeling code. it must be done within llama-stack.
- `PIL.Image` is infesting all our APIs via `ImageMedia ->
InterleavedTextMedia` and that cannot be right at all. Anything in the
API surface must be "naturally serializable". We need a standard `{
type: "image", image_url: "<...>" }` which is more extensible
- `UserMessage`, `SystemMessage`, etc. are moved completely to
llama-stack from the llama-models repository.

See https://github.com/meta-llama/llama-models/pull/244 for the
corresponding PR in llama-models.

## Test Plan

```bash
cd llama_stack/providers/tests

pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py
pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py
pytest -s -v -k chroma memory/test_memory.py \
  --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar

pytest -s -v -k fireworks agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct
```

Updated the client sdk (see PR ...), installed the SDK in the same
environment and then ran the SDK tests:

```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py
LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py

# this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly
INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py
```
2024-12-17 11:18:31 -08:00
Xi Yan
99f331f5c8
[bugfix] no shield_call when there's no shields configured (#642)
# What does this PR do?

**Why**
- When AgentConfig has no `input_shields` / `output_shields` defined, we
still outputs a shield_call step with violation=None. This is impossible
to distinguish the case b/w (1) no violation from running shields v.s.
(2) no shields call

**What**
- We should not have a shield_call step when no `input_shields` /
`output_shields` are defined.

- Also removes a never reached try/catch code block in agent loop.
`run_multiple_shields` is never called in the try block (verified by
stacktrace print)

**Side Note**
- pre-commit fix

## Test Plan

Tested w/ DirectClient via:
https://gist.github.com/yanxi0830/b48f2a53b6f5391b9ff1e39992bc05b3

**No Shields**
<img width="858" alt="image"
src="https://github.com/user-attachments/assets/67319370-329f-4954-bd16-d21ce54c6ebf"
/>

**With Input + Output Shields**
<img width="854" alt="image"
src="https://github.com/user-attachments/assets/75ab1bee-3ba9-4549-ab51-23210be83da7"
/>

**Input Shields Only**
<img width="858" alt="image"
src="https://github.com/user-attachments/assets/1897206b-13dd-4ea5-92c2-b39bf68e9286"
/>


E2E pytest
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk/agents/test_agents.py
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-17 11:10:19 -08:00
Ashwin Bharambe
c2f7905fa4 Fix bedrock inference impl 2024-12-16 14:22:34 -08:00
Dinesh Yeduguru
516e1a3e59
add embedding model by default to distribution templates (#617)
# What does this PR do?
Adds the sentence transformer provider and the `all-MiniLM-L6-v2`
embedding model to the default models to register in the run.yaml for
all providers.

## Test Plan
llama stack build --template together --image-type conda
llama stack run
~/.llama/distributions/llamastack-together/together-run.yaml
2024-12-13 12:48:00 -08:00
Dinesh Yeduguru
96e158eaac
Make embedding generation go through inference (#606)
This PR does the following:
1) adds the ability to generate embeddings in all supported inference
providers.
2) Moves all the memory providers to use the inference API and improved
the memory tests to setup the inference stack correctly and use the
embedding models

This is a merge from #589 and #598
2024-12-12 11:47:50 -08:00
Xi Yan
8b45d147df
[/datasetio] drop columns not specified by dataset schema for huggingface provider (#611)
# What does this PR do?

**Why**
- huggingface datasets could have extra unused columns, some of these
columns (e.g. images) is unable to be casted as JSON over http requests
for datasetio.
- it is also inefficient to create a new dataset that's a subset of
columns

**Solution**
- drop columns not specified by dataset schema

## Test Plan

Tested with script:
https://gist.github.com/yanxi0830/23be5725e0d82d79e24cc5dd1d21b571


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-12 10:23:09 -08:00
Ashwin Bharambe
b7cb06f004
Allow using an "inline" version of Chroma using PersistentClient (#567)
The same code is used (inside providers/remote/memory/chroma/chroma.py)
but it is driven by separate configurations and changes which Chroma
client to use. Note that the dependencies are separate
(`chromadb-client` vs `chromadb` -- the latter is a _much_ heavier
package.)

```
pytest -s -v -m chroma memory/test_memory.py --env CHROMA_DB_PATH=/tmp/chroma_test
pytest -s -v -m chroma memory/test_memory.py --env CHROMA_URL=http://localhost:6001
```
2024-12-11 16:02:04 -08:00
Matthew Farrellee
b52df5fe5b
add completion api support to nvidia inference provider (#533)
# What does this PR do?

add the completion api to the nvidia inference provider


## Test Plan

while running the meta/llama-3.1-8b-instruct NIM from
https://build.nvidia.com/meta/llama-3_1-8b-instruct?snippet_tab=Docker

```
➜ pytest -s -v --providers inference=nvidia llama_stack/providers/tests/inference/ --env NVIDIA_BASE_URL=http://localhost:8000 -k test_completion --inference-model Llama3.1-8B-Instruct
=============================================== test session starts ===============================================
platform linux -- Python 3.10.15, pytest-8.3.3, pluggy-1.5.0 -- /home/matt/.conda/envs/stack/bin/python
cachedir: .pytest_cache
rootdir: /home/matt/Documents/Repositories/meta-llama/llama-stack
configfile: pyproject.toml
plugins: anyio-4.6.2.post1, asyncio-0.24.0, httpx-0.34.0
asyncio: mode=strict, default_loop_scope=None
collected 20 items / 18 deselected / 2 selected                                                                             

llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[-nvidia] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[-nvidia] SKIPPED

============================= 1 passed, 1 skipped, 18 deselected, 6 warnings in 5.40s =============================
```

the structured output functionality works but the accuracy fails

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [x] Wrote necessary unit or integration tests.
2024-12-11 10:08:38 -08:00
Aidan Do
095125e463
[#391] Add support for json structured output for vLLM (#528)
# What does this PR do?

Addresses issue (#391)

- Adds json structured output for vLLM
- Enables structured output tests for vLLM

> Give me a recipe for Spaghetti Bolognaise:

```json
{
  "recipe_name": "Spaghetti Bolognaise",
  "preamble": "Ah, spaghetti bolognaise - the quintessential Italian dish that fills my kitchen with the aromas of childhood nostalgia. As a child, I would watch my nonna cook up a big pot of spaghetti bolognaise every Sunday, filling our small Italian household with the savory scent of simmering meat and tomatoes. The way the sauce would thicken and the spaghetti would al dente - it was love at first bite. And now, as a chef, I want to share that same love with you, so you can recreate these warm, comforting memories at home.",
  "ingredients": [
    "500g minced beef",
    "1 medium onion, finely chopped",
    "2 cloves garlic, minced",
    "1 carrot, finely chopped",
    " celery, finely chopped",
    "1 (28 oz) can whole peeled tomatoes",
    "1 tbsp tomato paste",
    "1 tsp dried basil",
    "1 tsp dried oregano",
    "1 tsp salt",
    "1/2 tsp black pepper",
    "1/2 tsp sugar",
    "1 lb spaghetti",
    "Grated Parmesan cheese, for serving",
    "Extra virgin olive oil, for serving"
  ],
  "steps": [
    "Heat a large pot over medium heat and add a generous drizzle of extra virgin olive oil.",
    "Add the chopped onion, garlic, carrot, and celery and cook until the vegetables are soft and translucent, about 5-7 minutes.",
    "Add the minced beef and cook until browned, breaking it up with a spoon as it cooks.",
    "Add the tomato paste and cook for 1-2 minutes, stirring constantly.",
    "Add the canned tomatoes, dried basil, dried oregano, salt, black pepper, and sugar. Stir well to combine.",
    "Bring the sauce to a simmer and let it cook for 20-30 minutes, stirring occasionally, until the sauce has thickened and the flavors have melded together.",
    "While the sauce cooks, bring a large pot of salted water to a boil and cook the spaghetti according to the package instructions until al dente. Reserve 1 cup of pasta water before draining the spaghetti.",
    "Add the reserved pasta water to the sauce and stir to combine.",
    "Combine the cooked spaghetti and sauce, tossing to coat the pasta evenly.",
    "Serve hot, topped with grated Parmesan cheese and a drizzle of extra virgin olive oil.",
    "Enjoy!"
  ]
}
```

Generated with Llama-3.2-3B-Instruct model - pretty good for a 3B
parameter model 👍

## Test Plan

`pytest -v -s
llama_stack/providers/tests/inference/test_text_inference.py -k
llama_3b-vllm_remote`

With the following setup:

```bash
# Environment
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export INFERENCE_PORT=8000
export VLLM_URL=http://localhost:8000/v1

# vLLM server
sudo docker run --gpus all \
    -v $STORAGE_DIR/.cache/huggingface:/root/.cache/huggingface \
    --env "HUGGING_FACE_HUB_TOKEN=$(cat ~/.cache/huggingface/token)" \
    -p 8000:$INFERENCE_PORT \
    --ipc=host \
    --net=host \
    vllm/vllm-openai:v0.6.3.post1 \
    --model $INFERENCE_MODEL

# llama-stack server
llama stack build --template remote-vllm --image-type conda && llama stack run distributions/remote-vllm/run.yaml \
  --port 5001 \
  --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
```

Results:

```
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[llama_3b-vllm_remote] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[llama_3b-vllm_remote] SKIPPED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completions_structured_output[llama_3b-vllm_remote] SKIPPED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[llama_3b-vllm_remote] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_3b-vllm_remote] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[llama_3b-vllm_remote] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[llama_3b-vllm_remote] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[llama_3b-vllm_remote] PASSED

================================ 6 passed, 2 skipped, 120 deselected, 2 warnings in 13.26s ================================
```

## Sources

- https://github.com/vllm-project/vllm/discussions/8300
- By default, vLLM uses https://github.com/dottxt-ai/outlines for
structured outputs
[[1](32e7db2536/vllm/engine/arg_utils.py (L279-L280))]

## Before submitting

[N/A] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case)

- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?

[N/A?] Updated relevant documentation. Couldn't find any relevant
documentation. Lmk if I've missed anything.

- [x] Wrote necessary unit or integration tests.
2024-12-08 15:02:51 -08:00
Ashwin Bharambe
14f973a64f
Make LlamaStackLibraryClient work correctly (#581)
This PR does a few things:

- it moves "direct client" to llama-stack repo instead of being in the
llama-stack-client-python repo
- renames it to `LlamaStackLibraryClient`
- actually makes synchronous generators work 
- makes streaming and non-streaming work properly

In many ways, this PR makes things finally "work"

## Test Plan

See a `library_client_test.py` I added. This isn't really quite a test
yet but it demonstrates that this mode now works. Here's the invocation
and the response:

```
INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct python llama_stack/distribution/tests/library_client_test.py ollama
```


![image](https://github.com/user-attachments/assets/17d4e116-4457-4755-a14e-d9a668801fe0)
2024-12-07 14:59:36 -08:00
Dinesh Yeduguru
a2d9a983de
remove unused telemetry related code (#570)
remove unused tracing code which was added back by mistake.
2024-12-05 09:57:16 -08:00
Dinesh Yeduguru
fcd6449519
Telemetry API redesign (#525)
# What does this PR do?
Change the Telemetry API to be able to support different use cases like
returning traces for the UI and ability to export for Evals.
Other changes:
* Add a new trace_protocol decorator to decorate all our API methods so
that any call to them will automatically get traced across all impls.
* There is some issue with the decorator pattern of span creation when
using async generators, where there are multiple yields with in the same
context. I think its much more explicit by using the explicit context
manager pattern using with. I moved the span creations in agent instance
to be using with
* Inject session id at the turn level, which should quickly give us all
traces across turns for a given session

Addresses #509

## Test Plan
```
llama stack run /Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml
PYTHONPATH=. python -m examples.agents.rag_with_memory_bank localhost 5000


 curl -X POST 'http://localhost:5000/alpha/telemetry/query-traces' \
-H 'Content-Type: application/json' \
-d '{
  "attribute_filters": [
    {
      "key": "session_id",
      "op": "eq",
      "value": "dd667b87-ca4b-4d30-9265-5a0de318fc65" }],
  "limit": 100,
  "offset": 0,
  "order_by": ["start_time"]
}' | jq .
[
  {
    "trace_id": "6902f54b83b4b48be18a6f422b13e16f",
    "root_span_id": "5f37b85543afc15a",
    "start_time": "2024-12-04T08:08:30.501587",
    "end_time": "2024-12-04T08:08:36.026463"
  },
  {
    "trace_id": "92227dac84c0615ed741be393813fb5f",
    "root_span_id": "af7c5bb46665c2c8",
    "start_time": "2024-12-04T08:08:36.031170",
    "end_time": "2024-12-04T08:08:41.693301"
  },
  {
    "trace_id": "7d578a6edac62f204ab479fba82f77b6",
    "root_span_id": "1d935e3362676896",
    "start_time": "2024-12-04T08:08:41.695204",
    "end_time": "2024-12-04T08:08:47.228016"
  },
  {
    "trace_id": "dbd767d76991bc816f9f078907dc9ff2",
    "root_span_id": "f5a7ee76683b9602",
    "start_time": "2024-12-04T08:08:47.234578",
    "end_time": "2024-12-04T08:08:53.189412"
  }
]


curl -X POST 'http://localhost:5000/alpha/telemetry/get-span-tree' \
-H 'Content-Type: application/json' \
-d '{ "span_id" : "6cceb4b48a156913", "max_depth": 2, "attributes_to_return": ["input"] }' | jq .
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   875  100   790  100    85  18462   1986 --:--:-- --:--:-- --:--:-- 20833
{
  "span_id": "6cceb4b48a156913",
  "trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
  "parent_span_id": "892a66d726c7f990",
  "name": "retrieve_rag_context",
  "start_time": "2024-12-04T09:28:21.781995",
  "end_time": "2024-12-04T09:28:21.913352",
  "attributes": {
    "input": [
      "{\"role\":\"system\",\"content\":\"You are a helpful assistant\"}",
      "{\"role\":\"user\",\"content\":\"What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.\",\"context\":null}"
    ]
  },
  "children": [
    {
      "span_id": "1a2df181854064a8",
      "trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
      "parent_span_id": "6cceb4b48a156913",
      "name": "MemoryRouter.query_documents",
      "start_time": "2024-12-04T09:28:21.787620",
      "end_time": "2024-12-04T09:28:21.906512",
      "attributes": {
        "input": null
      },
      "children": [],
      "status": "ok"
    }
  ],
  "status": "ok"
}

```

<img width="1677" alt="Screenshot 2024-12-04 at 9 42 56 AM"
src="https://github.com/user-attachments/assets/4d3cea93-05ce-415a-93d9-4b1628631bf8">
2024-12-04 11:22:45 -08:00
Sixian Yi
caf1dac114
unregister API for dataset (#507)
# What does this PR do?

1) Implement `unregister_dataset(dataset_id)` API in both llama stack
routing table and providers: It removes {dataset_id -> Dataset} mapping
from routing table and removes the dataset_id references in provider as
well (ex. for huggingface, we use a KV store to store the dataset id =>
dataset. we delete it during unregistering as well)

2) expose the datasets/unregister_dataset api endpoint 

## Test Plan

**Unit test:** 

`
pytest llama_stack/providers/tests/datasetio/test_datasetio.py -m
"huggingface" -v -s --tb=short --disable-warnings
`

**Test on endpoint:**
tested llama stack using an ollama distribution template:
1) start an ollama server 
2) Start a llama stack server with the default ollama distribution
config + dataset/datasetsio APIs + datasetio provider
```
---- .../ollama-run.yaml
...
apis:
- agents
- inference
- memory
- safety
- telemetry
- datasetio
- datasets
providers:
  datasetio:
  - provider_id: localfs
    provider_type: inline::localfs
    config: {}
...
```
   saw that the new API showed up in startup script
   
  ```
Serving API datasets
 GET /alpha/datasets/get
 GET /alpha/datasets/list
 POST /alpha/datasets/register
 POST /alpha/datasets/unregister
```

3) query `/alpha/datasets/unregister` through curl (since we have not implemented unregister api in llama stack client)

```
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets register
--dataset-id sixian --url
https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/chat.rst
--schema {}
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━┩
│ sixian     │ localfs     │ {}       │ dataset │
└────────────┴─────────────┴──────────┴─────────┘
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets register
--dataset-id sixian2 --url
https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/chat.rst
--schema {}
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━┩
│ sixian     │ localfs     │ {}       │ dataset │
│ sixian2    │ localfs     │ {}       │ dataset │
└────────────┴─────────────┴──────────┴─────────┘
(base) sxyi@sxyi-mbp llama-stack % curl
http://localhost:5001/alpha/datasets/unregister \
-H "Content-Type: application/json" \
-d '{"dataset_id": "sixian"}'
null%

(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━┩
│ sixian2    │ localfs     │ {}       │ dataset │
└────────────┴─────────────┴──────────┴─────────┘
(base) sxyi@sxyi-mbp llama-stack % curl
http://localhost:5001/alpha/datasets/unregister \
-H "Content-Type: application/json" \
-d '{"dataset_id": "sixian2"}'
null%

(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
```

## Sources


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-03 21:18:30 -08:00
Henry Tu
64c6df8392
Cerebras Inference Integration (#265)
Adding Cerebras Inference as an API provider.

## Testing

### Conda
```
$ llama stack build --template cerebras --image-type conda
$ llama stack run ~/.llama/distributions/llamastack-cerebras/cerebras-run.yaml
...
Listening on ['::', '0.0.0.0']:5000
INFO:     Started server process [12443]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://['::', '0.0.0.0']:5000 (Press CTRL+C to quit)
```

### Chat Completion
```
$ curl --location 'http://localhost:5000/alpha/inference/chat-completion' --header 'Content-Type: application/json' --data '{
    "model_id": "meta-llama/Llama-3.1-8B-Instruct",
    "messages": [
        {
            "role": "user",
            "content": "What is the temperature in Seattle right now?"
        }
    ],
    "stream": false,
    "sampling_params": {
        "strategy": "top_p",
        "temperature": 0.5,
        "max_tokens": 100
    },                   
    "tool_choice": "auto",
    "tool_prompt_format": "json",
    "tools": [                   
        {
            "tool_name": "getTemperature",
            "description": "Gets the current temperature of a location.",
            "parameters": {                                              
                "location": {
                    "param_type": "string",
                    "description": "The name of the place to get the temperature from in degress celsius.",
                    "required": true                                                                       
                }                   
            }    
        }    
    ]    
}' 
```

#### Non-Streaming Response
```
{
  "completion_message": {
    "role": "assistant",
    "content": "",
    "stop_reason": "end_of_message",
    "tool_calls": [
      {
        "call_id": "6f42fdcc-6cbb-46ad-a17b-5d20ac64b678",
        "tool_name": "getTemperature",
        "arguments": {
          "location": "Seattle"
        }
      }
    ]
  },
  "logprobs": null
}
```

#### Streaming Response
```
data: {"event":{"event_type":"start","delta":"","logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"","parse_status":"started"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"{\"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"type","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"function","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\",","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"name","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"get","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"Temperature","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\",","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"parameters","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" {\"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"location","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"Seattle","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\"}}","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":{"call_id":"e742df1f-0ae9-40ad-a49e-18e5c905484f","tool_name":"getTemperature","arguments":{"location":"Seattle"}},"parse_status":"success"},"logprobs":null,"stop_reason":"end_of_message"}}
data: {"event":{"event_type":"complete","delta":"","logprobs":null,"stop_reason":"end_of_message"}}
```

### Completion
```
$ curl --location 'http://localhost:5000/alpha/inference/completion' --header 'Content-Type: application/json' --data '{
    "model_id": "meta-llama/Llama-3.1-8B-Instruct",
    "content": "1,2,3,",
    "stream": true,
    "sampling_params": {
        "strategy": "top_p",
        "temperature": 0.5,
        "max_tokens": 10
    },                   
    "tool_choice": "auto",
    "tool_prompt_format": "json",
    "tools": [                   
        {
            "tool_name": "getTemperature",
            "description": "Gets the current temperature of a location.",
            "parameters": {                                              
                "location": {
                    "param_type": "string",
                    "description": "The name of the place to get the temperature from in degress celsius.",
                    "required": true                                                                       
                }                   
            }    
        }    
    ]    
}'
```

#### Non-Streaming Response
```
{
  "content": "4,5,6,7,8,",
  "stop_reason": "out_of_tokens",
  "logprobs": null
}
```

#### Streaming Response
```
data: {"delta":"4","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"5","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"6","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"7","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"8","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"","stop_reason":null,"logprobs":null}
data: {"delta":"","stop_reason":"out_of_tokens","logprobs":null}
```

### Pre-Commit Checks
```
trim trailing whitespace.................................................Passed
check python ast.........................................................Passed
check for merge conflicts................................................Passed
check for added large files..............................................Passed
fix end of files.........................................................Passed
Insert license in comments...............................................Passed
flake8...................................................................Passed
Format files with µfmt...................................................Passed
```

### Testing with `test_inference.py`
```
$ export CEREBRAS_API_KEY=<insert API key here>
$ pytest -v -s llama_stack/providers/tests/inference/test_text_inference.py -m "cerebras and llama_8b" 
/net/henryt-dev/srv/nfs/henryt-data/ws/llama-stack/.venv/lib/python3.12/site-packages/pytest_asyncio/plugin.py:208: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"

  warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
=================================================== test session starts ===================================================
platform linux -- Python 3.12.3, pytest-8.3.3, pluggy-1.5.0 -- /net/henryt-dev/srv/nfs/henryt-data/ws/llama-stack/.venv/bin/python3.12
cachedir: .pytest_cache
rootdir: /net/henryt-dev/srv/nfs/henryt-data/ws/llama-stack
configfile: pyproject.toml
plugins: anyio-4.6.2.post1, asyncio-0.24.0
asyncio: mode=Mode.STRICT, default_loop_scope=None
collected 128 items / 120 deselected / 8 selected                                                                         

llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[llama_8b-cerebras] Resolved 4 providers
 inner-inference => cerebras
 models => __routing_table__
 inference => __autorouted__
 inspect => __builtin__

Models: meta-llama/Llama-3.1-8B-Instruct served by cerebras

PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completions_structured_output[llama_8b-cerebras] SKIPPED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_8b-cerebras] SKIPPED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[llama_8b-cerebras] PASSED

================================ 6 passed, 2 skipped, 120 deselected, 6 warnings in 3.95s =================================
```

I ran `python llama_stack/scripts/distro_codegen.py` to run codegen.
2024-12-03 21:15:32 -08:00
Kai Wu
b6500974ec
removed assertion in ollama.py and fixed typo in the readme (#563)
# What does this PR do?
1. removed [incorrect
assertion](435f34b05e/llama_stack/providers/remote/inference/ollama/ollama.py (L183))
in ollama.py
2. fixed a typo in [this
line](435f34b05e/docs/source/distributions/importing_as_library.md (L24)),
as `model=` should be `model_id=` .

- [x] Addresses issue
([#issue562](https://github.com/meta-llama/llama-stack/issues/562))


## Test Plan

tested with code:

```python
import asyncio
import os

# pip install aiosqlite ollama faiss
from llama_stack_client.lib.direct.direct import LlamaStackDirectClient
from llama_stack_client.types import SystemMessage, UserMessage


async def main():
    os.environ["INFERENCE_MODEL"] = "meta-llama/Llama-3.2-1B-Instruct"
    client = await LlamaStackDirectClient.from_template("ollama")
    await client.initialize()
    response = await client.models.list()
    print(response)
    model_name = response[0].identifier
    response = await client.inference.chat_completion(
        messages=[
            SystemMessage(content="You are a friendly assistant.", role="system"),
            UserMessage(
                content="hello world, write me a 2 sentence poem about the moon",
                role="user",
            ),
        ],
        model_id=model_name,
        stream=False,
    )
    print("\nChat completion response:")
    print(response, type(response))


asyncio.run(main())

```
OUTPUT:
```
python test.py
Using template ollama with config:
apis:
- agents
- inference
- memory
- safety
- telemetry
conda_env: ollama
datasets: []
docker_image: null
eval_tasks: []
image_name: ollama
memory_banks: []
metadata_store:
  db_path: /Users/kaiwu/.llama/distributions/ollama/registry.db
  namespace: null
  type: sqlite
models:
- metadata: {}
  model_id: meta-llama/Llama-3.2-1B-Instruct
  provider_id: ollama
  provider_model_id: null
providers:
  agents:
  - config:
      persistence_store:
        db_path:
/Users/kaiwu/.llama/distributions/ollama/agents_store.db
        namespace: null
        type: sqlite
    provider_id: meta-reference
    provider_type: inline::meta-reference
  inference:
  - config:
      url: http://localhost:11434
    provider_id: ollama
    provider_type: remote::ollama
  memory:
  - config:
      kvstore:
        db_path:
/Users/kaiwu/.llama/distributions/ollama/faiss_store.db
        namespace: null
        type: sqlite
    provider_id: faiss
    provider_type: inline::faiss
  safety:
  - config: {}
    provider_id: llama-guard
    provider_type: inline::llama-guard
  telemetry:
  - config: {}
    provider_id: meta-reference
    provider_type: inline::meta-reference
scoring_fns: []
shields: []
version: '2'

[Model(identifier='meta-llama/Llama-3.2-1B-Instruct', provider_resource_id='llama3.2:1b-instruct-fp16', provider_id='ollama', type='model', metadata={})]

Chat completion response:
completion_message=CompletionMessage(role='assistant', content='Here is a short poem about the moon:\n\nThe moon glows bright in the midnight sky,\nA silver crescent shining, catching the eye.', stop_reason=<StopReason.end_of_turn: 'end_of_turn'>, tool_calls=[]) logprobs=None <class 'llama_stack.apis.inference.inference.ChatCompletionResponse'>
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-03 20:11:19 -08:00
Matthew Farrellee
060b4eb776
allow env NVIDIA_BASE_URL to set NVIDIAConfig.url (#531)
# What does this PR do?

this allows setting an NVIDIA_BASE_URL variable to control the
NVIDIAConfig.url option


## Test Plan

`pytest -s -v --providers inference=nvidia
llama_stack/providers/tests/inference/ --env
NVIDIA_BASE_URL=http://localhost:8000`


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-26 17:46:44 -08:00
Xi Yan
2936133f95 precommit 2024-11-25 18:55:54 -08:00
Xi Yan
bbd81231ce add missing __init__ 2024-11-25 17:23:27 -08:00
Dinesh Yeduguru
de7af28756
Tgi fixture (#519)
# What does this PR do?

* Add a test fixture for tgi
* Fixes the logic to correctly pass the llama model for chat completion

Fixes #514

## Test Plan

pytest -k "tgi"
llama_stack/providers/tests/inference/test_text_inference.py --env
TGI_URL=http://localhost:$INFERENCE_PORT --env TGI_API_TOKEN=$HF_TOKEN
2024-11-25 13:17:02 -08:00
Matthew Farrellee
4e6c984c26
add NVIDIA NIM inference adapter (#355)
# What does this PR do?

this PR adds a basic inference adapter to NVIDIA NIMs

what it does -
 - chat completion api
   - tool calls
   - streaming
   - structured output
   - logprobs
 - support hosted NIM on integrate.api.nvidia.com
 - support downloaded NIM containers

what it does not do -
 - completion api
 - embedding api
 - vision models
 - builtin tools
 - have certainty that sampling strategies are correct

## Feature/Issue validation/testing/test plan

`pytest -s -v --providers inference=nvidia
llama_stack/providers/tests/inference/ --env NVIDIA_API_KEY=...`

all tests should pass. there are pydantic v1 warnings.


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
- [x] Did you write any new necessary tests?

Thanks for contributing 🎉!
2024-11-23 15:59:00 -08:00
Ashwin Bharambe
707da55c23 Fix TGI register_model() issue 2024-11-23 08:47:05 -08:00