Commit graph

880 commits

Author SHA1 Message Date
Yuan Tang
8146dce11e
Add missing newlines before printing the Dockerfile content (#700)
Before:
```
Dockerfile created successfully in /tmp/tmp.qyMdb0vI8X/DockerfileFROM python:3.10-slim
WORKDIR /app

RUN apt-get update && apt-get install -y        iputils-ping net-tools iproute2 dnsutils telnet        curl wget telnet        procps psmisc lsof        traceroute        bubblewrap        && rm -rf /var/lib/apt/lists/*
```

After:
```
Dockerfile created successfully in /tmp/tmp.qyMdb0vI8X/Dockerfile

FROM python:3.10-slim
WORKDIR /app

RUN apt-get update && apt-get install -y        iputils-ping net-tools iproute2 dnsutils telnet        curl wget telnet        procps psmisc lsof        traceroute        bubblewrap        && rm -rf /var/lib/apt/lists/*

```

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-01-02 09:04:29 -08:00
Yuan Tang
c1987d6143
Fix failing flake8 E226 check (#701)
This fixes the pre-commit check when running locally (not sure why this
was not caught on CI check):

```
> pre-commit run --show-diff-on-failure --color=always --all-files
trim trailing whitespace.................................................Passed
check python ast.........................................................Passed
check for merge conflicts................................................Passed
check for added large files..............................................Passed
fix end of files.........................................................Passed
Insert license in comments...............................................Passed
flake8...................................................................Failed
- hook id: flake8
- exit code: 1

llama_stack/distribution/ui/page/evaluations/app_eval.py:132:65: E226 missing whitespace around arithmetic operator
llama_stack/distribution/ui/page/evaluations/native_eval.py:235:61: E226 missing whitespace around arithmetic operator
llama_stack/providers/utils/telemetry/trace_protocol.py:56:78: E226 missing whitespace around arithmetic operator


```

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-01-02 09:04:07 -08:00
Yuan Tang
eee25db11d
Add missing "inline::" prefix for providers in building_distro.md (#702)
This fixes the following errors:

```
ValueError: Provider `meta-reference` is not available for API `agents`
ValueError: Provider `meta-reference` is not available for API `telemetry`
```
2025-01-02 09:03:30 -08:00
Xi Yan
a6c206ea66
[bugfix] fix prompt_adapter interleaved_content_convert_to_raw (#696)
# What does this PR do?

- fix interleaved_content_convert_to_raw in prompt_adapter to correctly
convert ImageContentItem to RawMediaItem with raw data bytes

## Test Plan

```
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py
```

**Before**
<img width="844" alt="image"
src="https://github.com/user-attachments/assets/f2784b42-2e36-4477-9041-903d5d628a68"
/>


**After**
<img width="836" alt="image"
src="https://github.com/user-attachments/assets/362b6e47-29f7-4119-bcf3-f75db842735f"
/>


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-30 16:40:36 -08:00
Xi Yan
7c1e3daa75
[bugfix] fix meta-reference agents w/ safety multiple model loading pytest (#694)
# What does this PR do?

- Fix broken pytest for meta-reference's agents
- Safety model needs to be registered to a different provider id from
inference model in order to be recognized



## Test Plan
```
torchrun $CONDA_PREFIX/bin/pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "meta_reference" --safety-shield meta-llama/Llama-Guard-3-1B --inference-model meta-llama/Llama-3.1-8B-Instruct
```
**Before**
<img width="845" alt="image"
src="https://github.com/user-attachments/assets/83818fe1-2179-4e9c-a753-bf1472a2f01d"
/>



**After**
<img width="851" alt="image"
src="https://github.com/user-attachments/assets/1cf8124b-14e2-47bf-80fd-ef8b4b3f6fd9"
/>


**Other test not broken**
```
pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-30 16:25:46 -08:00
Derek Slager
8ba29b19f2
Minor Quick Start documentation updates. (#692)
Clarifying Python version requirement, fixing a sample command.
2024-12-30 14:19:05 -08:00
Xi Yan
694adb1501
[bugfix] fix broken vision inference, change serialization for bytes (#693)
# What does this PR do?

- vision inference via image as binary bytes fails with serialization
error
- add custom serialization for "bytes" in `_URLOrData`

## Test Plan

```
pytest -v -s -k "fireworks" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_non_streaming
```

**Before**
<img width="1020" alt="image"
src="https://github.com/user-attachments/assets/3803fcee-32ee-4b8e-ba46-47848e1a6247"
/>


**After**
<img width="1018" alt="image"
src="https://github.com/user-attachments/assets/f3e3156e-88ce-40fd-ad1b-44b87f376e03"
/>

<img width="822" alt="image"
src="https://github.com/user-attachments/assets/1898696f-95c0-4694-8a47-8f51c7de0e86"
/>



## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-30 13:57:41 -08:00
raghotham
79f8bc8416
Update index.md 2024-12-30 11:32:28 -08:00
Xi Yan
54f8aab61e copy getting_started 2024-12-30 10:42:28 -08:00
Xi Yan
0e098c483b link getting started 2024-12-30 09:47:10 -08:00
Xi Yan
3c72c034e6
[remove import *] clean up import *'s (#689)
# What does this PR do?

- as title, cleaning up `import *`'s
- upgrade tests to make them more robust to bad model outputs
- remove import *'s in llama_stack/apis/* (skip __init__ modules)
<img width="465" alt="image"
src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2"
/>

- run `sh run_openapi_generator.sh`, no types gets affected

## Test Plan

### Providers Tests

**agents**
```
pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8
```

**inference**
```bash
# meta-reference
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

# together
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py 
```

**safety**
```
pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B
```

**memory**
```
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
```

**scoring**
```
pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
```


**datasetio**
```
pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py
pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py
```


**eval**
```
pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py
```

### Client-SDK Tests
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk
```

### llama-stack-apps
```
PORT=5000
LOCALHOST=localhost

python -m examples.agents.hello $LOCALHOST $PORT
python -m examples.agents.inflation $LOCALHOST $PORT
python -m examples.agents.podcast_transcript $LOCALHOST $PORT
python -m examples.agents.rag_as_attachments $LOCALHOST $PORT
python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT
python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT
python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT

# Vision model
python -m examples.interior_design_assistant.app
python -m examples.agent_store.app $LOCALHOST $PORT
```

### CLI
```
which llama
llama model prompt-format -m Llama3.2-11B-Vision-Instruct
llama model list
llama stack list-apis
llama stack list-providers inference

llama stack build --template ollama --image-type conda
```

### Distributions Tests
**ollama**
```
llama stack build --template ollama --image-type conda
ollama run llama3.2:1b-instruct-fp16
llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
```

**fireworks**
```
llama stack build --template fireworks --image-type conda
llama stack run ./llama_stack/templates/fireworks/run.yaml
```

**together**
```
llama stack build --template together --image-type conda
llama stack run ./llama_stack/templates/together/run.yaml
```

**tgi**
```
llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-27 15:45:44 -08:00
Xi Yan
70db039ff4 fix client-sdk memory/safety test 2024-12-26 15:48:28 -08:00
Xi Yan
b6aca4c8bb fix client-sdk agents/inference test 2024-12-26 15:44:34 -08:00
Xi Yan
4e1d0a2fc5 update playground doc video 2024-12-26 14:50:19 -08:00
Xi Yan
28ce511986 fix --endpoint docs 2024-12-26 14:32:07 -08:00
Ikko Eltociear Ashimine
7ba95a8e74
docs: update evals_reference/index.md (#675)
# What does this PR do?

minor fix




## Sources

Please link relevant resources if necessary.


## Before submitting

- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-26 11:32:37 -08:00
Aidan Do
21fb92d7cf
Add 3.3 70B to Ollama inference provider (#681)
# What does this PR do?

Adds 3.3 70B support to Ollama inference provider

## Test Plan

<details>
<summary>Manual</summary>

```bash
# 42GB to download
ollama pull llama3.3:70b

ollama run llama3.3:70b --keepalive 60m

export LLAMA_STACK_PORT=5000
pip install -e . \
  && llama stack build --template ollama --image-type conda \
  && llama stack run ./distributions/ollama/run.yaml \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=Llama3.3-70B-Instruct \
  --env OLLAMA_URL=http://localhost:11434

export LLAMA_STACK_PORT=5000
llama-stack-client --endpoint http://localhost:$LLAMA_STACK_PORT \
  inference chat-completion \
  --model-id Llama3.3-70B-Instruct \
  --message "hello, what model are you?"
```

<img width="1221" alt="image"
src="https://github.com/user-attachments/assets/dcffbdd9-94c8-4d47-9f95-4ef6c3756294"
/>

</details>

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-25 22:15:58 -08:00
Yuan Tang
fa371fdc9e
Removed unnecessary CONDA_PREFIX env var in installation guide (#683)
This is not needed since `conda activate stack` has already been
executed.
2024-12-23 13:17:30 -08:00
Yuan Tang
987e651755
Add missing venv option in --image-type (#677)
"venv" option is supported but not mentioned in the prompt.

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2024-12-21 21:10:13 -08:00
Botao Chen
bae197c37e
Fix post training apis broken by torchtune release (#674)
There is a torchtune release this morning
https://github.com/pytorch/torchtune/releases/tag/v0.5.0 and breaks post
training apis

## test 
spinning up server and the post training works again after the fix 
<img width="1314" alt="Screenshot 2024-12-20 at 4 08 54 PM"
src="https://github.com/user-attachments/assets/dfae724d-ebf0-4846-9715-096efa060cee"
/>


## Note
We need to think hard of how to avoid this happen again and have a fast
follow up on this after holidays
2024-12-20 16:12:02 -08:00
Botao Chen
06cb0c837e
[torchtune integration] post training + eval (#670)
## What does this PR do?

- Add related Apis in experimental-post-training template to enable eval
on the finetuned checkpoint in the template
- A small bug fix on meta reference eval
- A small error handle improvement on post training 


## Test Plan
From client side issued an E2E post training request
https://github.com/meta-llama/llama-stack-client-python/pull/70 and get
eval results successfully

<img width="1315" alt="Screenshot 2024-12-20 at 12 06 59 PM"
src="https://github.com/user-attachments/assets/a09bd524-59ae-490c-908f-2e36ccf27c0a"
/>
2024-12-20 13:43:13 -08:00
Dinesh Yeduguru
c8be0bf1c9
Tools API with brave and MCP providers (#639)
This PR adds a new Tools api and adds two tool runtime providers: brave
and MCP.

Test plan:
```
curl -X POST 'http://localhost:5000/alpha/toolgroups/register' \
-H 'Content-Type: application/json' \
-d '{ "tool_group_id": "simple_tool",
  "tool_group": {
    "type": "model_context_protocol",
    "endpoint": {"uri": "http://localhost:56000/sse"}
  },
  "provider_id": "model-context-protocol"
}'

 curl -X POST 'http://localhost:5000/alpha/toolgroups/register' \
-H 'Content-Type: application/json' \
-d '{
  "tool_group_id": "search", "provider_id": "brave-search",
  "tool_group": {
    "type": "user_defined",
    "tools": [
      {
        "name": "brave_search",
        "description": "A web search tool",
        "parameters": [
          {
            "name": "query",
            "parameter_type": "string",
            "description": "The query to search"
          }
        ],
        "metadata": {},
        "tool_prompt_format": "json"
      }
    ]
  }
}'

 curl -X GET http://localhost:5000/alpha/tools/list | jq .
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   662  100   662    0     0   333k      0 --:--:-- --:--:-- --:--:--  646k
[
  {
    "identifier": "brave_search",
    "provider_resource_id": "brave_search",
    "provider_id": "brave-search",
    "type": "tool",
    "tool_group": "search",
    "description": "A web search tool",
    "parameters": [
      {
        "name": "query",
        "parameter_type": "string",
        "description": "The query to search"
      }
    ],
    "metadata": {},
    "tool_prompt_format": "json"
  },
  {
    "identifier": "fetch",
    "provider_resource_id": "fetch",
    "provider_id": "model-context-protocol",
    "type": "tool",
    "tool_group": "simple_tool",
    "description": "Fetches a website and returns its content",
    "parameters": [
      {
        "name": "url",
        "parameter_type": "string",
        "description": "URL to fetch"
      }
    ],
    "metadata": {
      "endpoint": "http://localhost:56000/sse"
    },
    "tool_prompt_format": "json"
  }
]

curl -X POST 'http://localhost:5000/alpha/tool-runtime/invoke' \
-H 'Content-Type: application/json' \
-d '{
    "tool_name": "fetch",
    "args": {
        "url": "http://google.com/"
    }
}'

 curl -X POST 'http://localhost:5000/alpha/tool-runtime/invoke' \
-H 'Content-Type: application/json' -H 'X-LlamaStack-ProviderData: {"api_key": "<KEY>"}' \
-d '{
    "tool_name": "brave_search",
    "args": {
        "query": "who is meta ceo"
    }
}'
```
2024-12-19 21:25:17 -08:00
Aidan Do
17fdb47e5e
Add Llama 70B 3.3 to fireworks (#654)
# What does this PR do?

- Makes Llama 70B 3.3 available for fireworks

## Test Plan

```shell
pip install -e . \
&& llama stack build --config distributions/fireworks/build.yaml --image-type conda \
&& llama stack run distributions/fireworks/run.yaml \
  --port 5000
```

```python
        response = client.inference.chat_completion(
            model_id="Llama3.3-70B-Instruct",
            messages=[
                {"role": "user", "content": "hello world"},
            ],
        )
```

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-19 17:32:49 -08:00
Dinesh Yeduguru
8b8d1c1ef4
fix trace starting in library client (#655)
# What does this PR do?

Because of the way library client sets up async io boundaries, tracing
was broken with streaming. This PR fixes the tracing to start at the
right way to caputre the life time of async gen functions correctly.

Test plan:
Script ran:
https://gist.github.com/yanxi0830/f6645129e55ab12de3cd6ec71564c69e

Before: No spans returned for a session


Now: We see spans
<img width="1678" alt="Screenshot 2024-12-18 at 9 50 46 PM"
src="https://github.com/user-attachments/assets/58a3b0dd-a41c-489a-b89a-075e698a2c03"
/>
2024-12-19 16:13:52 -08:00
cdgamarose-nv
ddf37ea467
Fixed imports for inference (#661)
# What does this PR do?

In short, provide a summary of what this PR does and why. Usually, the
relevant context should be present in a linked issue.

- [x] Addresses issue (#issue)
```
    from .nvidia import NVIDIAInferenceAdapter
  File "/localhome/local-cdgamarose/llama-stack/llama_stack/providers/remote/inference/nvidia/nvidia.py", line 37, in <module>
    from .openai_utils import (
  File "/localhome/local-cdgamarose/llama-stack/llama_stack/providers/remote/inference/nvidia/openai_utils.py", line 11, in <module>
    from llama_models.llama3.api.datatypes import (
ImportError: cannot import name 'CompletionMessage' from 'llama_models.llama3.api.datatypes' (/localhome/local-cdgamarose/.local/lib/python3.10/site-packages/llama_models/llama3/api/datatypes.py)
++ error_handler 62
```

## Test Plan
Deploy NIM using docker from
https://build.nvidia.com/meta/llama-3_1-8b-instruct?snippet_tab=Docker
```
(lsmyenv) local-cdgamarose@a4u8g-0006:~/llama-stack$ python3 -m pytest -s -v --providers inference=nvidia llama_stack/providers/tests/inference/ --env NVIDIA_BASE_URL=http://localhost:8000 -k test_completion --inference-model Llama3.1-8B-Instruct
======================================================================================== test session starts =========================================================================================
platform linux -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /localhome/local-cdgamarose/anaconda3/envs/lsmyenv/bin/python3
cachedir: .pytest_cache
rootdir: /localhome/local-cdgamarose/llama-stack
configfile: pyproject.toml
plugins: anyio-4.7.0, asyncio-0.25.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 24 items / 21 deselected / 3 selected

llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[-nvidia] Initializing NVIDIAInferenceAdapter(http://localhost:8000)...
Checking NVIDIA NIM health...
Checking NVIDIA NIM health...
PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_logprobs[-nvidia] SKIPPED (Other inference providers don't support completion() yet)
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[-nvidia] SKIPPED (This test is not quite robust)

====================================================================== 1 passed, 2 skipped, 21 deselected, 2 warnings in 1.57s =======================================================================
```

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [x] Wrote necessary unit or integration tests.
2024-12-19 14:19:36 -08:00
Ashwin Bharambe
540fc4d717
Fix Meta reference GPU implementation (#663)
By performing in-place mutations, we lost. Never in life do that.
2024-12-19 14:09:45 -08:00
Ashwin Bharambe
f19eb8eee3 Update types in parallel_utils for meta-refernece-gpu impl 2024-12-19 13:58:41 -08:00
Vladimir Ivic
b33086d632 Adding @vladimirivic to the owners file 2024-12-19 13:22:10 -08:00
Xi Yan
5be2ea37b1 fix context_retriever model->model_id 2024-12-19 12:52:00 -08:00
Dinesh Yeduguru
03607a68c7
remove unused telemetry related code for console (#659)
# What does this PR do?
Remove unused code since this now exists in the meta reference provider
as a sink


## Test Plan

llama stack run
~/.llama/distributions/llamastack-together/together-run.yaml
2024-12-19 11:21:11 -08:00
Botao Chen
36b4fe02cc
[4/n][torchtune integration] support lazy load model during inference (#620)
## What does this PR do?
In this PR, we refactor the meta reference inference logic to support 
- load the model during registering model instead of during spinning up
server
- support inference finetuned model checkpoint on top of native llama
model

## Why need these changes
To solve the existing pain points that 
- user cannot lazy load the model and hot switch the inference
checkpoint after spinning up the server
- this blocks us doing inference and eval on the same sever for a
finetuned checkpoint after post training
- user cannot do inference on a finetuned checkpoint on top of native
llama models

## Expect user experience change
- The inference model won't be loaded when spinning up server. Instead,
it will be loaded during register model. If user add the model as models
resource in run.yaml, it will be registered and loaded automatically
when starting server. There is an optional flag 'skip_initialize' in
model metadata to skip model loading during registration.
- There is an optional flag 'llama_model' in model metadata to identify
the base model of the Model class for validation and initialize model
arch. model identifier no longer needs to be a native llama model
- the default inference model name updates from
'meta-llama/Llama-3.2-3B-Instruct' to 'Llama3.2-3B-Instruct'
- It aligns with the checkpoint folder name after running 'llama model
download'
- It aligns with the descriptor name defined in llama-models SKU list
bf5b0c4fe7/models/datatypes.py (L95)


## test
run python llama_stack/scripts/distro_codegen.py


**run unit test**
- torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference"
--inference-model="Llama3.1-8B-Instruct"
./llama_stack/providers/tests/inference/test_text_inference.py
- torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference"
--inference-model="Llama3.1-8B-Instruct"
./llama_stack/providers/tests/inference/test_model_registration.py


**test post training experience**
on server side run: llama stack run
llama_stack/templates/experimental-post-training/run.yaml
server is spinning up without model loaded

<img width="812" alt="Screenshot 2024-12-17 at 1 24 50 PM"
src="https://github.com/user-attachments/assets/ce1f606b-3b6f-452f-b48e-b3761ffd90f3"
/>

on client side, run: llama-stack-client --endpoint
http://devgpu018.nha2.facebook.com:5000 models register
Llama3.2-3B-Instruct
register model successfully and the model is loaded 
<img width="1111" alt="Screenshot 2024-12-17 at 1 26 30 PM"
src="https://github.com/user-attachments/assets/56e02131-cf7d-4de5-8f63-fbdcb8c55c26"
/>


<img width="1541" alt="Screenshot 2024-12-17 at 1 26 09 PM"
src="https://github.com/user-attachments/assets/a83255a1-20f5-40a2-af51-55641410a115"
/>

if add "skip_initialize" in metadata, model is registered but isn't
loaded

on client side, run: llama-stack-client --endpoint
http://devgpu018.nha2.facebook.com:5000 inference chat-completion
--message "hello, what model are you?"

Inference the model succesfully
<img width="1121" alt="Screenshot 2024-12-17 at 1 27 33 PM"
src="https://github.com/user-attachments/assets/8e708545-3fe7-4a73-8754-1470fa5f1e75"
/>

**test inference experience**
run: llama stack run llama_stack/templates/meta-reference-gpu/run.yaml
model is loaded since the model is in resouce list in run.yaml 
<img width="1537" alt="Screenshot 2024-12-17 at 1 30 19 PM"
src="https://github.com/user-attachments/assets/5c8af817-66eb-43f8-bf4c-f5e24b0a12c6"
/>

on client side, run: llama-stack-client --endpoint
http://devgpu018.nha2.facebook.com:5000 inference chat-completion
--message "hello, what model are you?"
inference successfully 
<img width="1123" alt="Screenshot 2024-12-17 at 1 31 08 PM"
src="https://github.com/user-attachments/assets/471809aa-c65e-46dc-a37e-7094fb857f97"
/>



## inference on a finetuned model
**register a finetuned model that finetuned by post training api
(torchtune)**
- the model is registered and loaded successfully 
- the model is shown up in the model list 
<img width="974" alt="Screenshot 2024-12-18 at 3 56 33 PM"
src="https://github.com/user-attachments/assets/2994b4f5-4fa9-40c6-acc6-4b971479f3e2"
/>

**run inference**

<img width="977" alt="Screenshot 2024-12-18 at 3 57 59 PM"
src="https://github.com/user-attachments/assets/d117abbc-b2a0-41d8-a028-1a13128787b2"
/>
2024-12-18 16:30:53 -08:00
Ashwin Bharambe
3b4b2ea30c fix replace_env_vars bug 2024-12-18 13:48:30 -08:00
Ashwin Bharambe
12cbed1617 Register Message and ResponseFormat 2024-12-18 10:32:25 -08:00
Ashwin Bharambe
ceadaf1840 Dont include 3B / 1B models for bedrock since they arent ondemand 2024-12-18 06:30:02 -08:00
Ashwin Bharambe
c39a3777b5 Make bedrock "just" work 2024-12-18 06:22:33 -08:00
Ashwin Bharambe
d6fcdefec7 Bump version to 0.0.63 2024-12-17 23:15:27 -08:00
Ashwin Bharambe
f1d6cb22d7 Update URL type to avoid string-ifying and creating complexity 2024-12-17 22:50:11 -08:00
Xi Yan
75e72cf2fc model_type=llm for filering available models for playground 2024-12-17 19:42:38 -08:00
Ashwin Bharambe
2f9fdb0ea7 Update notebook 2024-12-17 18:52:02 -08:00
Ashwin Bharambe
0fb4b7de6f Add more debugging logs to when llama guard fails 2024-12-17 18:52:02 -08:00
Ashwin Bharambe
eea478618d Bump version to 0.0.62 2024-12-17 18:19:47 -08:00
Xi Yan
af8f1b3531 model selection playground fix 2024-12-17 18:13:52 -08:00
Dinesh Yeduguru
3700022d6f
store attributes values in builtin types to avoid otel warnings (#649)
# What does this PR do?

Serialize objects to built in types to avoid otel warnings


## Test Plan

╰─❯ llama stack run
~/.llama/distributions/llamastack-together/together-run.yaml
2024-12-17 17:10:43 -08:00
Henry Tu
0e2a99e223
Update Cerebras from Llama 3.1 to 3.3 (#645)
# What does this PR do?

Cerebras is rolling out support for llama 3.3 70b and deprecating llama
3.1 70b. This PR updates the documentation, config, and internal mapping
to reflect this change.

cc: @ashwinb @raghotham
2024-12-17 16:28:24 -08:00
Ashwin Bharambe
b7a7caa9a8 Fix conversion to RawMessage everywhere 2024-12-17 14:00:43 -08:00
Ashwin Bharambe
fbca51d6da Fix to conda env build script 2024-12-17 12:19:34 -08:00
Ashwin Bharambe
0452c6a0c7 add missing init file 2024-12-17 11:49:03 -08:00
Ashwin Bharambe
8de8eb03c8
Update the "InterleavedTextMedia" type (#635)
## What does this PR do?

This is a long-pending change and particularly important to get done
now.

Specifically:
- we cannot "localize" (aka download) any URLs from media attachments
anywhere near our modeling code. it must be done within llama-stack.
- `PIL.Image` is infesting all our APIs via `ImageMedia ->
InterleavedTextMedia` and that cannot be right at all. Anything in the
API surface must be "naturally serializable". We need a standard `{
type: "image", image_url: "<...>" }` which is more extensible
- `UserMessage`, `SystemMessage`, etc. are moved completely to
llama-stack from the llama-models repository.

See https://github.com/meta-llama/llama-models/pull/244 for the
corresponding PR in llama-models.

## Test Plan

```bash
cd llama_stack/providers/tests

pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py
pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py
pytest -s -v -k chroma memory/test_memory.py \
  --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar

pytest -s -v -k fireworks agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct
```

Updated the client sdk (see PR ...), installed the SDK in the same
environment and then ran the SDK tests:

```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py
LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py

# this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly
INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py
```
2024-12-17 11:18:31 -08:00
Arun Brahma
10eb31badf
docs: Update getting_started.ipynb link to correct jupyter notebook path in README.md (#636)
# What does this PR do?

This PR fixes a broken link in the README.md that was causing a 404
error. The link to `getting_started.ipynb` was pointing to a
non-existent file. Updated it to point to the correct notebook
`Llama_Stack_Building_AI_Applications.ipynb` which contains the
walk-through for text and vision inference llama_stack_client APIs.

- [x] Addresses issue (#633 )

## Test Plan

1. Verified that the new notebook path exists:
   ```bash
   ls docs/notebooks/Llama_Stack_Building_AI_Applications.ipynb
   ```

2. Verified the notebook content contains text and vision inference
examples by:
   - Checking the notebook contents
- Confirming the presence of vision models like
Llama-3.2-11B-Vision-Instruct
   - Verifying llama_stack_client API usage examples


## Before submitting

- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section.
- [x] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests (N/A - documentation
change only).
2024-12-17 11:11:13 -08:00
Xi Yan
99f331f5c8
[bugfix] no shield_call when there's no shields configured (#642)
# What does this PR do?

**Why**
- When AgentConfig has no `input_shields` / `output_shields` defined, we
still outputs a shield_call step with violation=None. This is impossible
to distinguish the case b/w (1) no violation from running shields v.s.
(2) no shields call

**What**
- We should not have a shield_call step when no `input_shields` /
`output_shields` are defined.

- Also removes a never reached try/catch code block in agent loop.
`run_multiple_shields` is never called in the try block (verified by
stacktrace print)

**Side Note**
- pre-commit fix

## Test Plan

Tested w/ DirectClient via:
https://gist.github.com/yanxi0830/b48f2a53b6f5391b9ff1e39992bc05b3

**No Shields**
<img width="858" alt="image"
src="https://github.com/user-attachments/assets/67319370-329f-4954-bd16-d21ce54c6ebf"
/>

**With Input + Output Shields**
<img width="854" alt="image"
src="https://github.com/user-attachments/assets/75ab1bee-3ba9-4549-ab51-23210be83da7"
/>

**Input Shields Only**
<img width="858" alt="image"
src="https://github.com/user-attachments/assets/1897206b-13dd-4ea5-92c2-b39bf68e9286"
/>


E2E pytest
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk/agents/test_agents.py
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-17 11:10:19 -08:00