Commit graph

5 commits

Author SHA1 Message Date
Suraj Subramanian
b81a3bd46a
Fix import conflict for SamplingParams (#285)
Conflict between llama_models.llama3.api.datatypes.SamplingParams and vllm.sampling_params.SamplingParams results in errors while processing VLLM engine requests
2024-10-22 12:56:00 -07:00
Ashwin Bharambe
2089427d60
Make all methods async def again; add completion() for meta-reference (#270)
PR #201 had made several changes while trying to fix issues with getting the stream=False branches of inference and agents API working. As part of this, it made a change which was slightly gratuitous. Namely, making chat_completion() and brethren "def" instead of "async def".

The rationale was that this allowed the user (within llama-stack) of this to use it as:

```
async for chunk in api.chat_completion(params)
```

However, it causes unnecessary confusion for several folks. Given that clients (e.g., llama-stack-apps) anyway use the SDK methods (which are completely isolated) this choice was not ideal. Let's revert back so the call now looks like:

```
async for chunk in await api.chat_completion(params)
```

Bonus: Added a completion() implementation for the meta-reference provider. Technically should have been another PR :)
2024-10-18 20:50:59 -07:00
Yuan Tang
80ada04f76
Remove request arg from chat completion response processing (#240)
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2024-10-15 13:03:17 -07:00
Ashwin Bharambe
6bb57e72a7
Remove "routing_table" and "routing_key" concepts for the user (#201)
This PR makes several core changes to the developer experience surrounding Llama Stack.

Background: PR #92 introduced the notion of "routing" to the Llama Stack. It introduces three object types: (1) models, (2) shields and (3) memory banks. Each of these objects can be associated with a distinct provider. So you can get model A to be inferenced locally while model B, C can be inference remotely (e.g.)

However, this had a few drawbacks:

you could not address the provider instances -- i.e., if you configured "meta-reference" with a given model, you could not assign an identifier to this instance which you could re-use later.
the above meant that you could not register a "routing_key" (e.g. model) dynamically and say "please use this existing provider I have already configured" for a new model.
the terms "routing_table" and "routing_key" were exposed directly to the user. in my view, this is way too much overhead for a new user (which almost everyone is.) people come to the stack wanting to do ML and encounter a completely unexpected term.
What this PR does: This PR structures the run config with only a single prominent key:

- providers
Providers are instances of configured provider types. Here's an example which shows two instances of the remote::tgi provider which are serving two different models.

providers:
  inference:
  - provider_id: foo
    provider_type: remote::tgi
    config: { ... }
  - provider_id: bar
    provider_type: remote::tgi
    config: { ... }
Secondly, the PR adds dynamic registration of { models | shields | memory_banks } to the API surface. The distribution still acts like a "routing table" (as previously) except that it asks the backing providers for a listing of these objects. For example it asks a TGI or Ollama inference adapter what models it is serving. Only the models that are being actually served can be requested by the user for inference. Otherwise, the Stack server will throw an error.

When dynamically registering these objects, you can use the provider IDs shown above. Info about providers can be obtained using the Api.inspect set of endpoints (/providers, /routes, etc.)

The above examples shows the correspondence between inference providers and models registry items. Things work similarly for the safety <=> shields and memory <=> memory_banks pairs.

Registry: This PR also makes it so that Providers need to implement additional methods for registering and listing objects. For example, each Inference provider is now expected to implement the ModelsProtocolPrivate protocol (naming is not great!) which consists of two methods

register_model
list_models
The goal is to inform the provider that a certain model needs to be supported so the provider can make any relevant backend changes if needed (or throw an error if the model cannot be supported.)

There are many other cleanups included some of which are detailed in a follow-up comment.
2024-10-10 10:24:13 -07:00
Russell Bryant
f73e247ba1
Inline vLLM inference provider (#181)
This is just like `local` using `meta-reference` for everything except
it uses `vllm` for inference.

Docker works, but So far, `conda` is a bit easier to use with the vllm
provider. The default container base image does not include all the
necessary libraries for all vllm features. More cuda dependencies are
necessary.

I started changing this base image used in this template, but it also
required changes to the Dockerfile, so it was getting too involved to
include in the first PR.

Working so far:

* `python -m llama_stack.apis.inference.client localhost 5000 --model Llama3.2-1B-Instruct --stream True`
* `python -m llama_stack.apis.inference.client localhost 5000 --model Llama3.2-1B-Instruct --stream False`

Example:

```
$ python -m llama_stack.apis.inference.client localhost 5000 --model Llama3.2-1B-Instruct --stream False
User>hello world, write me a 2 sentence poem about the moon
Assistant>
The moon glows bright in the midnight sky
A beacon of light,
```

I have only tested these models:

* `Llama3.1-8B-Instruct` - across 4 GPUs (tensor_parallel_size = 4)
* `Llama3.2-1B-Instruct` - on a single GPU (tensor_parallel_size = 1)
2024-10-05 23:34:16 -07:00