Commit graph

9 commits

Author SHA1 Message Date
Reid
db4ee7a9ff
docs: improve rag doc (#1411)
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Signed-off-by: reidliu <reid201711@gmail.com>
Co-authored-by: reidliu <reid201711@gmail.com>
2025-03-06 14:03:52 -08:00
Daniele Martinoli
fb998683e0
fix: Agent uses the first configured vector_db_id when documents are provided (#1276)
# What does this PR do?
The agent API allows to query multiple DBs using the `vector_db_ids`
argument of the `rag` tool:
```py
        toolgroups=[
            {
                "name": "builtin::rag",
                "args": {"vector_db_ids": [vector_db_id]},
            }
        ],
```
This means that multiple DBs can be used to compose an aggregated
context by executing the query on each of them.

When documents are passed to the next agent turn, there is no explicit
way to configure the vector DB where the embeddings will be ingested. In
such cases, we can assume that:
- if any `vector_db_ids` is given, we use the first one (it probably
makes sense to assume that it's the only one in the list, otherwise we
should loop on all the given DBs to have a consistent ingestion)
- if no `vector_db_ids` is given, we can use the current logic to
generate a default DB using the default provider. If multiple providers
are defined, the API will fail as expected: the user has to provide
details on where to ingest the documents.

(Closes #1270)

## Test Plan
The issue description details how to replicate the problem.

[//]: # (## Documentation)

---------

Signed-off-by: Daniele Martinoli <dmartino@redhat.com>
2025-03-04 21:44:13 -08:00
ehhuang
52977e56a8
docs: update Agent documentation (#1333)
Summary:
- [new] Agent concepts (session, turn)
- [new] how to write custom tools
- [new] non-streaming API and how to get outputs
- [update] remaining `memory` -> `rag` rename
- [new] note importance of `instructions`

Test Plan:
read
2025-03-01 22:34:52 -08:00
ehhuang
c8a20b8ed0
feat: allow specifying specific tool within toolgroup (#1239)
Summary:

E.g. `builtin::rag::knowledge_search`

Test Plan:
```
LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/agents/ --safety-shield meta-llama/Llama-Guard-3-8B
```
2025-02-26 14:07:05 -08:00
Kevin Cogan
561295af76
docs: Fix Links, Add Podman Instructions, Vector DB Unregister, and Example Script (#1129)
# What does this PR do?
This PR improves the documentation in several ways:

- **Fixed incorrect link in `tools.md`** to ensure all references point
to the correct resources.
- **Added instructions for running the `code-interpreter` agent in a
Podman container**, helping users configure and execute the tool in
containerized environments.
- **Introduced an unregister command for single and multiple vector
databases**, making it easier to manage vector DBs.
- **Provided a simple example script for using the `code-interpreter`
agent**, giving users a practical reference for implementation.

These updates enhance the clarity, usability, and completeness of the
documentation.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
The following steps were performed to verify the accuracy of the
changes:

1. **Validated all fixed link** by checking their destinations to ensure
correctness.
2. **Ran the `code-interpreter` agent in a Podman container** following
the new instructions to confirm functionality.
3. **Executed the vector database unregister commands** and verified
that both single and multiple databases were correctly removed.
4. **Tested the new example script for `code-interpreter`**, ensuring it
runs without errors.

All changes were reviewed and tested successfully, improving the
documentation's accuracy and ease of use.

[//]: # (## Documentation)
2025-02-20 13:52:14 -08:00
Michael Clifford
076213165c
docs: update rag.md example code to prevent errors (#1009) 2025-02-10 09:25:30 -05:00
Yuan Tang
34ab7a3b6c
Fix precommit check after moving to ruff (#927)
Lint check in main branch is failing. This fixes the lint check after we
moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We
need to move to a `ruff.toml` file as well as fixing and ignoring some
additional checks.

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-02-02 06:46:45 -08:00
Ashwin Bharambe
d123e9d3d7 Update docs for RAG and improve CONTRIBUTING.md 2025-01-28 06:09:48 -08:00
Hardik Shah
74e933cbfd
More Updates to Read the Docs (#856) 2025-01-23 11:39:33 -08:00