Compare commits

..

1 commit

Author SHA1 Message Date
ashwinb
075c5401f5 docs: update CHANGELOG.md for v0.2.7
Signed-off-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2025-05-16 21:31:11 +00:00
351 changed files with 9284 additions and 25653 deletions

View file

@ -1,8 +1,10 @@
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. -->
[Provide a short summary of what this PR does and why. Link to relevant issues if applicable.]
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
<!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* -->
[Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.*]
[//]: # (## Documentation)

View file

@ -1,22 +0,0 @@
name: Setup runner
description: Prepare a runner for the tests (install uv, python, project dependencies, etc.)
runs:
using: "composite"
steps:
- name: Install uv
uses: astral-sh/setup-uv@6b9c6063abd6010835644d4c2e1bef4cf5cd0fca # v6.0.1
with:
python-version: "3.10"
activate-environment: true
version: 0.7.6
- name: Install dependencies
shell: bash
run: |
uv sync --all-groups
uv pip install ollama faiss-cpu
# always test against the latest version of the client
# TODO: this is not necessarily a good idea. we need to test against both published and latest
# to find out backwards compatibility issues.
uv pip install git+https://github.com/meta-llama/llama-stack-client-python.git@main
uv pip install -e .

View file

@ -1 +0,0 @@
FROM localhost:5000/distribution-kvant:dev

View file

@ -1,73 +0,0 @@
name: Build and Push playground container
run-name: Build and Push playground container
on:
workflow_dispatch:
#schedule:
# - cron: "0 10 * * *"
push:
branches:
- main
- kvant
tags:
- 'v*'
pull_request:
branches:
- main
- kvant
env:
IMAGE: git.kvant.cloud/${{github.repository}}-playground
jobs:
build-playground:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set current time
uses: https://github.com/gerred/actions/current-time@master
id: current_time
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to git.kvant.cloud registry
uses: docker/login-action@v3
with:
registry: git.kvant.cloud
username: ${{ vars.ORG_PACKAGE_WRITER_USERNAME }}
password: ${{ secrets.ORG_PACKAGE_WRITER_TOKEN }}
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
with:
# list of Docker images to use as base name for tags
images: |
${{env.IMAGE}}
# generate Docker tags based on the following events/attributes
tags: |
type=schedule
type=ref,event=branch
type=ref,event=pr
type=ref,event=tag
type=semver,pattern={{version}}
- name: Build and push to gitea registry
uses: docker/build-push-action@v6
with:
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
context: .
file: llama_stack/distribution/ui/Containerfile
provenance: mode=max
sbom: true
build-args: |
BUILD_DATE=${{ steps.current_time.outputs.time }}
cache-from: |
type=registry,ref=${{ env.IMAGE }}:buildcache
type=registry,ref=${{ env.IMAGE }}:${{ github.ref_name }}
type=registry,ref=${{ env.IMAGE }}:main
cache-to: type=registry,ref=${{ env.IMAGE }}:buildcache,mode=max,image-manifest=true

View file

@ -1,98 +0,0 @@
name: Build and Push container
run-name: Build and Push container
on:
workflow_dispatch:
#schedule:
# - cron: "0 10 * * *"
push:
branches:
- main
- kvant
tags:
- 'v*'
pull_request:
branches:
- main
- kvant
env:
IMAGE: git.kvant.cloud/${{github.repository}}
jobs:
build:
runs-on: ubuntu-latest
services:
registry:
image: registry:2
ports:
- 5000:5000
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set current time
uses: https://github.com/gerred/actions/current-time@master
id: current_time
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver-opts: network=host
- name: Login to git.kvant.cloud registry
uses: docker/login-action@v3
with:
registry: git.kvant.cloud
username: ${{ vars.ORG_PACKAGE_WRITER_USERNAME }}
password: ${{ secrets.ORG_PACKAGE_WRITER_TOKEN }}
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
with:
# list of Docker images to use as base name for tags
images: |
${{env.IMAGE}}
# generate Docker tags based on the following events/attributes
tags: |
type=schedule
type=ref,event=branch
type=ref,event=pr
type=ref,event=tag
type=semver,pattern={{version}}
- name: Install uv
uses: https://github.com/astral-sh/setup-uv@v5
with:
# Install a specific version of uv.
version: "0.7.8"
- name: Build
env:
USE_COPY_NOT_MOUNT: true
LLAMA_STACK_DIR: .
run: |
uvx --from . llama stack build --template kvant --image-type container
# docker tag distribution-kvant:dev ${{env.IMAGE}}:kvant
# docker push ${{env.IMAGE}}:kvant
docker tag distribution-kvant:dev localhost:5000/distribution-kvant:dev
docker push localhost:5000/distribution-kvant:dev
- name: Build and push to gitea registry
uses: docker/build-push-action@v6
with:
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
context: .github/workflows
provenance: mode=max
sbom: true
build-args: |
BUILD_DATE=${{ steps.current_time.outputs.time }}
cache-from: |
type=registry,ref=${{ env.IMAGE }}:buildcache
type=registry,ref=${{ env.IMAGE }}:${{ github.ref_name }}
type=registry,ref=${{ env.IMAGE }}:main
cache-to: type=registry,ref=${{ env.IMAGE }}:buildcache,mode=max,image-manifest=true

View file

@ -23,18 +23,23 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
auth-provider: [oauth2_token]
auth-provider: [kubernetes]
fail-fast: false # we want to run all tests regardless of failure
steps:
- name: Checkout repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Install uv
uses: astral-sh/setup-uv@c7f87aa956e4c323abf06d5dec078e358f6b4d04 # v6.0.0
with:
python-version: "3.10"
activate-environment: true
- name: Build Llama Stack
- name: Set Up Environment and Install Dependencies
run: |
uv sync --extra dev --extra test
uv pip install -e .
llama stack build --template ollama --image-type venv
- name: Install minikube
@ -42,53 +47,29 @@ jobs:
uses: medyagh/setup-minikube@cea33675329b799adccc9526aa5daccc26cd5052 # v0.0.19
- name: Start minikube
if: ${{ matrix.auth-provider == 'oauth2_token' }}
if: ${{ matrix.auth-provider == 'kubernetes' }}
run: |
minikube start
kubectl get pods -A
- name: Configure Kube Auth
if: ${{ matrix.auth-provider == 'oauth2_token' }}
if: ${{ matrix.auth-provider == 'kubernetes' }}
run: |
kubectl create namespace llama-stack
kubectl create serviceaccount llama-stack-auth -n llama-stack
kubectl create rolebinding llama-stack-auth-rolebinding --clusterrole=admin --serviceaccount=llama-stack:llama-stack-auth -n llama-stack
kubectl create token llama-stack-auth -n llama-stack > llama-stack-auth-token
cat <<EOF | kubectl apply -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: allow-anonymous-openid
rules:
- nonResourceURLs: ["/openid/v1/jwks"]
verbs: ["get"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: allow-anonymous-openid
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: allow-anonymous-openid
subjects:
- kind: User
name: system:anonymous
apiGroup: rbac.authorization.k8s.io
EOF
- name: Set Kubernetes Config
if: ${{ matrix.auth-provider == 'oauth2_token' }}
if: ${{ matrix.auth-provider == 'kubernetes' }}
run: |
echo "KUBERNETES_API_SERVER_URL=$(kubectl get --raw /.well-known/openid-configuration| jq -r .jwks_uri)" >> $GITHUB_ENV
echo "KUBERNETES_API_SERVER_URL=$(kubectl config view --minify -o jsonpath='{.clusters[0].cluster.server}')" >> $GITHUB_ENV
echo "KUBERNETES_CA_CERT_PATH=$(kubectl config view --minify -o jsonpath='{.clusters[0].cluster.certificate-authority}')" >> $GITHUB_ENV
echo "KUBERNETES_ISSUER=$(kubectl get --raw /.well-known/openid-configuration| jq -r .issuer)" >> $GITHUB_ENV
echo "KUBERNETES_AUDIENCE=$(kubectl create token llama-stack-auth -n llama-stack --duration=1h | cut -d. -f2 | base64 -d | jq -r '.aud[0]')" >> $GITHUB_ENV
- name: Set Kube Auth Config and run server
env:
INFERENCE_MODEL: "meta-llama/Llama-3.2-3B-Instruct"
if: ${{ matrix.auth-provider == 'oauth2_token' }}
if: ${{ matrix.auth-provider == 'kubernetes' }}
run: |
run_dir=$(mktemp -d)
cat <<'EOF' > $run_dir/run.yaml
@ -100,10 +81,10 @@ jobs:
port: 8321
EOF
yq eval '.server.auth = {"provider_type": "${{ matrix.auth-provider }}"}' -i $run_dir/run.yaml
yq eval '.server.auth.config = {"tls_cafile": "${{ env.KUBERNETES_CA_CERT_PATH }}", "issuer": "${{ env.KUBERNETES_ISSUER }}", "audience": "${{ env.KUBERNETES_AUDIENCE }}"}' -i $run_dir/run.yaml
yq eval '.server.auth.config.jwks = {"uri": "${{ env.KUBERNETES_API_SERVER_URL }}"}' -i $run_dir/run.yaml
yq eval '.server.auth.config = {"api_server_url": "${{ env.KUBERNETES_API_SERVER_URL }}", "ca_cert_path": "${{ env.KUBERNETES_CA_CERT_PATH }}"}' -i $run_dir/run.yaml
cat $run_dir/run.yaml
source .venv/bin/activate
nohup uv run llama stack run $run_dir/run.yaml --image-type venv > server.log 2>&1 &
- name: Wait for Llama Stack server to be ready

View file

@ -24,7 +24,7 @@ jobs:
matrix:
# Listing tests manually since some of them currently fail
# TODO: generate matrix list from tests/integration when fixed
test-type: [agents, inference, datasets, inspect, scoring, post_training, providers, tool_runtime]
test-type: [agents, inference, datasets, inspect, scoring, post_training, providers]
client-type: [library, http]
fail-fast: false # we want to run all tests regardless of failure
@ -32,14 +32,24 @@ jobs:
- name: Checkout repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Install uv
uses: astral-sh/setup-uv@c7f87aa956e4c323abf06d5dec078e358f6b4d04 # v6.0.0
with:
python-version: "3.10"
activate-environment: true
- name: Setup ollama
uses: ./.github/actions/setup-ollama
- name: Build Llama Stack
- name: Set Up Environment and Install Dependencies
run: |
uv sync --extra dev --extra test
uv pip install ollama faiss-cpu
# always test against the latest version of the client
# TODO: this is not necessarily a good idea. we need to test against both published and latest
# to find out backwards compatibility issues.
uv pip install git+https://github.com/meta-llama/llama-stack-client-python.git@main
uv pip install -e .
llama stack build --template ollama --image-type venv
- name: Start Llama Stack server in background
@ -47,7 +57,8 @@ jobs:
env:
INFERENCE_MODEL: "meta-llama/Llama-3.2-3B-Instruct"
run: |
LLAMA_STACK_LOG_FILE=server.log nohup uv run llama stack run ./llama_stack/templates/ollama/run.yaml --image-type venv &
source .venv/bin/activate
nohup uv run llama stack run ./llama_stack/templates/ollama/run.yaml --image-type venv > server.log 2>&1 &
- name: Wait for Llama Stack server to be ready
if: matrix.client-type == 'http'
@ -75,12 +86,6 @@ jobs:
exit 1
fi
- name: Check Storage and Memory Available Before Tests
if: ${{ always() }}
run: |
free -h
df -h
- name: Run Integration Tests
env:
INFERENCE_MODEL: "meta-llama/Llama-3.2-3B-Instruct"
@ -90,24 +95,17 @@ jobs:
else
stack_config="http://localhost:8321"
fi
uv run pytest -s -v tests/integration/${{ matrix.test-type }} --stack-config=${stack_config} \
uv run pytest -v tests/integration/${{ matrix.test-type }} --stack-config=${stack_config} \
-k "not(builtin_tool or safety_with_image or code_interpreter or test_rag)" \
--text-model="meta-llama/Llama-3.2-3B-Instruct" \
--embedding-model=all-MiniLM-L6-v2
- name: Check Storage and Memory Available After Tests
if: ${{ always() }}
run: |
free -h
df -h
- name: Write ollama logs to file
if: ${{ always() }}
run: |
sudo journalctl -u ollama.service > ollama.log
- name: Upload all logs to artifacts
if: ${{ always() }}
if: always()
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02 # v4.6.2
with:
name: logs-${{ github.run_id }}-${{ github.run_attempt }}-${{ matrix.client-type }}-${{ matrix.test-type }}

View file

@ -29,7 +29,6 @@ jobs:
- uses: pre-commit/action@2c7b3805fd2a0fd8c1884dcaebf91fc102a13ecd # v3.0.1
env:
SKIP: no-commit-to-branch
RUFF_OUTPUT_FORMAT: github
- name: Verify if there are any diff files after pre-commit
run: |

View file

@ -50,8 +50,21 @@ jobs:
- name: Checkout repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Set up Python
uses: actions/setup-python@a26af69be951a213d495a4c3e4e4022e16d87065 # v5.6.0
with:
python-version: '3.10'
- name: Install uv
uses: astral-sh/setup-uv@c7f87aa956e4c323abf06d5dec078e358f6b4d04 # v6.0.0
with:
python-version: "3.10"
- name: Install LlamaStack
run: |
uv venv
source .venv/bin/activate
uv pip install -e .
- name: Print build dependencies
run: |
@ -66,6 +79,7 @@ jobs:
- name: Print dependencies in the image
if: matrix.image-type == 'venv'
run: |
source test/bin/activate
uv pip list
build-single-provider:
@ -74,8 +88,21 @@ jobs:
- name: Checkout repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Set up Python
uses: actions/setup-python@a26af69be951a213d495a4c3e4e4022e16d87065 # v5.6.0
with:
python-version: '3.10'
- name: Install uv
uses: astral-sh/setup-uv@c7f87aa956e4c323abf06d5dec078e358f6b4d04 # v6.0.0
with:
python-version: "3.10"
- name: Install LlamaStack
run: |
uv venv
source .venv/bin/activate
uv pip install -e .
- name: Build a single provider
run: |
@ -87,8 +114,21 @@ jobs:
- name: Checkout repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Set up Python
uses: actions/setup-python@a26af69be951a213d495a4c3e4e4022e16d87065 # v5.6.0
with:
python-version: '3.10'
- name: Install uv
uses: astral-sh/setup-uv@c7f87aa956e4c323abf06d5dec078e358f6b4d04 # v6.0.0
with:
python-version: "3.10"
- name: Install LlamaStack
run: |
uv venv
source .venv/bin/activate
uv pip install -e .
- name: Build a single provider
run: |
@ -112,8 +152,21 @@ jobs:
- name: Checkout repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Set up Python
uses: actions/setup-python@a26af69be951a213d495a4c3e4e4022e16d87065 # v5.6.0
with:
python-version: '3.10'
- name: Install uv
uses: astral-sh/setup-uv@0c5e2b8115b80b4c7c5ddf6ffdd634974642d182 # v5.4.1
with:
python-version: "3.10"
- name: Install LlamaStack
run: |
uv venv
source .venv/bin/activate
uv pip install -e .
- name: Pin template to UBI9 base
run: |

View file

@ -25,8 +25,15 @@ jobs:
- name: Checkout repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Install uv
uses: astral-sh/setup-uv@c7f87aa956e4c323abf06d5dec078e358f6b4d04 # v6.0.0
with:
python-version: "3.10"
- name: Set Up Environment and Install Dependencies
run: |
uv sync --extra dev --extra test
uv pip install -e .
- name: Apply image type to config file
run: |
@ -52,6 +59,7 @@ jobs:
env:
INFERENCE_MODEL: "meta-llama/Llama-3.2-3B-Instruct"
run: |
source ci-test/bin/activate
uv run pip list
nohup uv run --active llama stack run tests/external-provider/llama-stack-provider-ollama/run.yaml --image-type ${{ matrix.image-type }} > server.log 2>&1 &

View file

@ -30,11 +30,17 @@ jobs:
- "3.12"
- "3.13"
steps:
- name: Checkout repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Set up Python ${{ matrix.python }}
uses: actions/setup-python@a26af69be951a213d495a4c3e4e4022e16d87065 # v5.6.0
with:
python-version: ${{ matrix.python }}
- uses: astral-sh/setup-uv@c7f87aa956e4c323abf06d5dec078e358f6b4d04 # v6.0.0
with:
python-version: ${{ matrix.python }}
enable-cache: false
- name: Run unit tests
run: |

View file

@ -37,8 +37,16 @@ jobs:
- name: Checkout repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: Install dependencies
uses: ./.github/actions/setup-runner
- name: Set up Python
uses: actions/setup-python@a26af69be951a213d495a4c3e4e4022e16d87065 # v5.6.0
with:
python-version: '3.11'
- name: Install the latest version of uv
uses: astral-sh/setup-uv@c7f87aa956e4c323abf06d5dec078e358f6b4d04 # v6.0.0
- name: Sync with uv
run: uv sync --extra docs
- name: Build HTML
run: |

2
.gitignore vendored
View file

@ -6,7 +6,6 @@ dev_requirements.txt
build
.DS_Store
llama_stack/configs/*
.cursor/
xcuserdata/
*.hmap
.DS_Store
@ -24,4 +23,3 @@ venv/
pytest-report.xml
.coverage
.python-version
data

View file

@ -53,7 +53,7 @@ repos:
- black==24.3.0
- repo: https://github.com/astral-sh/uv-pre-commit
rev: 0.7.8
rev: 0.6.3
hooks:
- id: uv-lock
- id: uv-export
@ -61,7 +61,6 @@ repos:
"--frozen",
"--no-hashes",
"--no-emit-project",
"--no-default-groups",
"--output-file=requirements.txt"
]
@ -89,17 +88,20 @@ repos:
- id: distro-codegen
name: Distribution Template Codegen
additional_dependencies:
- uv==0.7.8
entry: uv run --group codegen ./scripts/distro_codegen.py
- uv==0.6.0
entry: uv run --extra codegen ./scripts/distro_codegen.py
language: python
pass_filenames: false
require_serial: true
files: ^llama_stack/templates/.*$|^llama_stack/providers/.*/inference/.*/models\.py$
- repo: local
hooks:
- id: openapi-codegen
name: API Spec Codegen
additional_dependencies:
- uv==0.7.8
entry: sh -c 'uv run ./docs/openapi_generator/run_openapi_generator.sh > /dev/null'
- uv==0.6.2
entry: sh -c 'uv run --with ".[dev]" ./docs/openapi_generator/run_openapi_generator.sh > /dev/null'
language: python
pass_filenames: false
require_serial: true

View file

@ -5,21 +5,28 @@
# Required
version: 2
# Build documentation in the "docs/" directory with Sphinx
sphinx:
configuration: docs/source/conf.py
# Set the OS, Python version and other tools you might need
build:
os: ubuntu-22.04
tools:
python: "3.12"
jobs:
pre_create_environment:
- asdf plugin add uv
- asdf install uv latest
- asdf global uv latest
create_environment:
- uv venv "${READTHEDOCS_VIRTUALENV_PATH}"
install:
- UV_PROJECT_ENVIRONMENT="${READTHEDOCS_VIRTUALENV_PATH}" uv sync --frozen --group docs
# You can also specify other tool versions:
# nodejs: "19"
# rust: "1.64"
# golang: "1.19"
# Build documentation in the "docs/" directory with Sphinx
sphinx:
configuration: docs/source/conf.py
# Optionally build your docs in additional formats such as PDF and ePub
# formats:
# - pdf
# - epub
# Optional but recommended, declare the Python requirements required
# to build your documentation
# See https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html
python:
install:
- requirements: docs/requirements.txt

View file

@ -3,14 +3,14 @@
# v0.2.7
Published on: 2025-05-16T20:38:10Z
## Highlights
This is a small update. But a couple highlights:
* feat: function tools in OpenAI Responses by @bbrowning in https://github.com/meta-llama/llama-stack/pull/2094, getting closer to ready. Streaming is the next missing piece.
* feat: Adding support for customizing chunk context in RAG insertion and querying by @franciscojavierarceo in https://github.com/meta-llama/llama-stack/pull/2134
* feat: scaffolding for Llama Stack UI by @ehhuang in https://github.com/meta-llama/llama-stack/pull/2149, more to come in the coming releases.
## Highlights
This is a small update. But a couple highlights:
* feat: function tools in OpenAI Responses by @bbrowning in https://github.com/meta-llama/llama-stack/pull/2094, getting closer to ready. Streaming is the next missing piece.
* feat: Adding support for customizing chunk context in RAG insertion and querying by @franciscojavierarceo in https://github.com/meta-llama/llama-stack/pull/2134
* feat: scaffolding for Llama Stack UI by @ehhuang in https://github.com/meta-llama/llama-stack/pull/2149, more to come in the coming releases.
---
@ -31,42 +31,42 @@ Published on: 2025-05-04T20:16:49Z
# v0.2.4
Published on: 2025-04-29T17:26:01Z
## Highlights
* One-liner to install and run Llama Stack yay! by @reluctantfuturist in https://github.com/meta-llama/llama-stack/pull/1383
* support for NVIDIA NeMo datastore by @raspawar in https://github.com/meta-llama/llama-stack/pull/1852
* (yuge!) Kubernetes authentication by @leseb in https://github.com/meta-llama/llama-stack/pull/1778
* (yuge!) OpenAI Responses API by @bbrowning in https://github.com/meta-llama/llama-stack/pull/1989
* add api.llama provider, llama-guard-4 model by @ashwinb in https://github.com/meta-llama/llama-stack/pull/2058
## Highlights
* One-liner to install and run Llama Stack yay! by @reluctantfuturist in https://github.com/meta-llama/llama-stack/pull/1383
* support for NVIDIA NeMo datastore by @raspawar in https://github.com/meta-llama/llama-stack/pull/1852
* (yuge!) Kubernetes authentication by @leseb in https://github.com/meta-llama/llama-stack/pull/1778
* (yuge!) OpenAI Responses API by @bbrowning in https://github.com/meta-llama/llama-stack/pull/1989
* add api.llama provider, llama-guard-4 model by @ashwinb in https://github.com/meta-llama/llama-stack/pull/2058
---
# v0.2.3
Published on: 2025-04-25T22:46:21Z
## Highlights
* OpenAI compatible inference endpoints and client-SDK support. `client.chat.completions.create()` now works.
* significant improvements and functionality added to the nVIDIA distribution
* many improvements to the test verification suite.
* new inference providers: Ramalama, IBM WatsonX
* many improvements to the Playground UI
## Highlights
* OpenAI compatible inference endpoints and client-SDK support. `client.chat.completions.create()` now works.
* significant improvements and functionality added to the nVIDIA distribution
* many improvements to the test verification suite.
* new inference providers: Ramalama, IBM WatsonX
* many improvements to the Playground UI
---
# v0.2.2
Published on: 2025-04-13T01:19:49Z
## Main changes
- Bring Your Own Provider (@leseb) - use out-of-tree provider code to execute the distribution server
- OpenAI compatible inference API in progress (@bbrowning)
- Provider verifications (@ehhuang)
- Many updates and fixes to playground
- Several llama4 related fixes
## Main changes
- Bring Your Own Provider (@leseb) - use out-of-tree provider code to execute the distribution server
- OpenAI compatible inference API in progress (@bbrowning)
- Provider verifications (@ehhuang)
- Many updates and fixes to playground
- Several llama4 related fixes
---
@ -80,10 +80,10 @@ Published on: 2025-04-05T23:13:00Z
# v0.2.0
Published on: 2025-04-05T19:04:29Z
## Llama 4 Support
Checkout more at https://www.llama.com
## Llama 4 Support
Checkout more at https://www.llama.com
---
@ -91,58 +91,58 @@ Checkout more at https://www.llama.com
# v0.1.9
Published on: 2025-03-29T00:52:23Z
### Build and Test Agents
* Agents: Entire document context with attachments
* RAG: Documentation with sqlite-vec faiss comparison
* Getting started: Fixes to getting started notebook.
### Agent Evals and Model Customization
* (**New**) Post-training: Add nemo customizer
### Better Engineering
* Moved sqlite-vec to non-blocking calls
* Don't return a payload on file delete
### Build and Test Agents
* Agents: Entire document context with attachments
* RAG: Documentation with sqlite-vec faiss comparison
* Getting started: Fixes to getting started notebook.
### Agent Evals and Model Customization
* (**New**) Post-training: Add nemo customizer
### Better Engineering
* Moved sqlite-vec to non-blocking calls
* Don't return a payload on file delete
---
# v0.1.8
Published on: 2025-03-24T01:28:50Z
# v0.1.8 Release Notes
### Build and Test Agents
* Safety: Integrated NVIDIA as a safety provider.
* VectorDB: Added Qdrant as an inline provider.
* Agents: Added support for multiple tool groups in agents.
* Agents: Simplified imports for Agents in client package
### Agent Evals and Model Customization
* Introduced DocVQA and IfEval benchmarks.
### Deploying and Monitoring Agents
* Introduced a Containerfile and image workflow for the Playground.
* Implemented support for Bearer (API Key) authentication.
* Added attribute-based access control for resources.
* Fixes on docker deployments: use --pull always and standardized the default port to 8321
* Deprecated: /v1/inspect/providers use /v1/providers/ instead
### Better Engineering
* Consolidated scripts under the ./scripts directory.
* Addressed mypy violations in various modules.
* Added Dependabot scans for Python dependencies.
* Implemented a scheduled workflow to update the changelog automatically.
* Enforced concurrency to reduce CI loads.
### New Contributors
* @cmodi-meta made their first contribution in https://github.com/meta-llama/llama-stack/pull/1650
* @jeffmaury made their first contribution in https://github.com/meta-llama/llama-stack/pull/1671
* @derekhiggins made their first contribution in https://github.com/meta-llama/llama-stack/pull/1698
* @Bobbins228 made their first contribution in https://github.com/meta-llama/llama-stack/pull/1745
# v0.1.8 Release Notes
### Build and Test Agents
* Safety: Integrated NVIDIA as a safety provider.
* VectorDB: Added Qdrant as an inline provider.
* Agents: Added support for multiple tool groups in agents.
* Agents: Simplified imports for Agents in client package
### Agent Evals and Model Customization
* Introduced DocVQA and IfEval benchmarks.
### Deploying and Monitoring Agents
* Introduced a Containerfile and image workflow for the Playground.
* Implemented support for Bearer (API Key) authentication.
* Added attribute-based access control for resources.
* Fixes on docker deployments: use --pull always and standardized the default port to 8321
* Deprecated: /v1/inspect/providers use /v1/providers/ instead
### Better Engineering
* Consolidated scripts under the ./scripts directory.
* Addressed mypy violations in various modules.
* Added Dependabot scans for Python dependencies.
* Implemented a scheduled workflow to update the changelog automatically.
* Enforced concurrency to reduce CI loads.
### New Contributors
* @cmodi-meta made their first contribution in https://github.com/meta-llama/llama-stack/pull/1650
* @jeffmaury made their first contribution in https://github.com/meta-llama/llama-stack/pull/1671
* @derekhiggins made their first contribution in https://github.com/meta-llama/llama-stack/pull/1698
* @Bobbins228 made their first contribution in https://github.com/meta-llama/llama-stack/pull/1745
**Full Changelog**: https://github.com/meta-llama/llama-stack/compare/v0.1.7...v0.1.8
---
@ -150,73 +150,73 @@ Published on: 2025-03-24T01:28:50Z
# v0.1.7
Published on: 2025-03-14T22:30:51Z
## 0.1.7 Release Notes
### Build and Test Agents
* Inference: ImageType is now refactored to LlamaStackImageType
* Inference: Added tests to measure TTFT
* Inference: Bring back usage metrics
* Agents: Added endpoint for get agent, list agents and list sessions
* Agents: Automated conversion of type hints in client tool for lite llm format
* Agents: Deprecated ToolResponseMessage in agent.resume API
* Added Provider API for listing and inspecting provider info
### Agent Evals and Model Customization
* Eval: Added new eval benchmarks Math 500 and BFCL v3
* Deploy and Monitoring of Agents
* Telemetry: Fix tracing to work across coroutines
### Better Engineering
* Display code coverage for unit tests
* Updated call sites (inference, tool calls, agents) to move to async non blocking calls
* Unit tests also run on Python 3.11, 3.12, and 3.13
* Added ollama inference to Integration tests CI
* Improved documentation across examples, testing, CLI, updated providers table )
## 0.1.7 Release Notes
### Build and Test Agents
* Inference: ImageType is now refactored to LlamaStackImageType
* Inference: Added tests to measure TTFT
* Inference: Bring back usage metrics
* Agents: Added endpoint for get agent, list agents and list sessions
* Agents: Automated conversion of type hints in client tool for lite llm format
* Agents: Deprecated ToolResponseMessage in agent.resume API
* Added Provider API for listing and inspecting provider info
### Agent Evals and Model Customization
* Eval: Added new eval benchmarks Math 500 and BFCL v3
* Deploy and Monitoring of Agents
* Telemetry: Fix tracing to work across coroutines
### Better Engineering
* Display code coverage for unit tests
* Updated call sites (inference, tool calls, agents) to move to async non blocking calls
* Unit tests also run on Python 3.11, 3.12, and 3.13
* Added ollama inference to Integration tests CI
* Improved documentation across examples, testing, CLI, updated providers table )
---
# v0.1.6
Published on: 2025-03-08T04:35:08Z
## 0.1.6 Release Notes
### Build and Test Agents
* Inference: Fixed support for inline vllm provider
* (**New**) Agent: Build & Monitor Agent Workflows with Llama Stack + Anthropic's Best Practice [Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_Agent_Workflows.ipynb)
* (**New**) Agent: Revamped agent [documentation](https://llama-stack.readthedocs.io/en/latest/building_applications/agent.html) with more details and examples
* Agent: Unify tools and Python SDK Agents API
* Agent: AsyncAgent Python SDK wrapper supporting async client tool calls
* Agent: Support python functions without @client_tool decorator as client tools
* Agent: deprecation for allow_resume_turn flag, and remove need to specify tool_prompt_format
* VectorIO: MilvusDB support added
### Agent Evals and Model Customization
* (**New**) Agent: Llama Stack RAG Lifecycle [Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_RAG_Lifecycle.ipynb)
* Eval: Documentation for eval, scoring, adding new benchmarks
* Eval: Distribution template to run benchmarks on llama & non-llama models
* Eval: Ability to register new custom LLM-as-judge scoring functions
* (**New**) Looking for contributors for open benchmarks. See [documentation](https://llama-stack.readthedocs.io/en/latest/references/evals_reference/index.html#open-benchmark-contributing-guide) for details.
### Deploy and Monitoring of Agents
* Better support for different log levels across all components for better monitoring
### Better Engineering
* Enhance OpenAPI spec to include Error types across all APIs
* Moved all tests to /tests and created unit tests to run on each PR
* Removed all dependencies on llama-models repo
## 0.1.6 Release Notes
### Build and Test Agents
* Inference: Fixed support for inline vllm provider
* (**New**) Agent: Build & Monitor Agent Workflows with Llama Stack + Anthropic's Best Practice [Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_Agent_Workflows.ipynb)
* (**New**) Agent: Revamped agent [documentation](https://llama-stack.readthedocs.io/en/latest/building_applications/agent.html) with more details and examples
* Agent: Unify tools and Python SDK Agents API
* Agent: AsyncAgent Python SDK wrapper supporting async client tool calls
* Agent: Support python functions without @client_tool decorator as client tools
* Agent: deprecation for allow_resume_turn flag, and remove need to specify tool_prompt_format
* VectorIO: MilvusDB support added
### Agent Evals and Model Customization
* (**New**) Agent: Llama Stack RAG Lifecycle [Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_RAG_Lifecycle.ipynb)
* Eval: Documentation for eval, scoring, adding new benchmarks
* Eval: Distribution template to run benchmarks on llama & non-llama models
* Eval: Ability to register new custom LLM-as-judge scoring functions
* (**New**) Looking for contributors for open benchmarks. See [documentation](https://llama-stack.readthedocs.io/en/latest/references/evals_reference/index.html#open-benchmark-contributing-guide) for details.
### Deploy and Monitoring of Agents
* Better support for different log levels across all components for better monitoring
### Better Engineering
* Enhance OpenAPI spec to include Error types across all APIs
* Moved all tests to /tests and created unit tests to run on each PR
* Removed all dependencies on llama-models repo
---
# v0.1.5.1
Published on: 2025-02-28T22:37:44Z
## 0.1.5.1 Release Notes
* Fixes for security risk in https://github.com/meta-llama/llama-stack/pull/1327 and https://github.com/meta-llama/llama-stack/pull/1328
## 0.1.5.1 Release Notes
* Fixes for security risk in https://github.com/meta-llama/llama-stack/pull/1327 and https://github.com/meta-llama/llama-stack/pull/1328
**Full Changelog**: https://github.com/meta-llama/llama-stack/compare/v0.1.5...v0.1.5.1
---
@ -224,176 +224,176 @@ Published on: 2025-02-28T22:37:44Z
# v0.1.5
Published on: 2025-02-28T18:14:01Z
## 0.1.5 Release Notes
### Build Agents
* Inference: Support more non-llama models (openai, anthropic, gemini)
* Inference: Can use the provider's model name in addition to the HF alias
* Inference: Fixed issues with calling tools that weren't specified in the prompt
* RAG: Improved system prompt for RAG and no more need for hard-coded rag-tool calling
* Embeddings: Added support for Nemo retriever embedding models
* Tools: Added support for MCP tools in Ollama Distribution
* Distributions: Added new Groq distribution
### Customize Models
* Save post-trained checkpoint in SafeTensor format to allow Ollama inference provider to use the post-trained model
### Monitor agents
* More comprehensive logging of agent steps including client tools
* Telemetry inputs/outputs are now structured and queryable
* Ability to retrieve agents session, turn, step by ids
### Better Engineering
* Moved executorch Swift code out of this repo into the llama-stack-client-swift repo, similar to kotlin
* Move most logging to use logger instead of prints
* Completed text /chat-completion and /completion tests
## 0.1.5 Release Notes
### Build Agents
* Inference: Support more non-llama models (openai, anthropic, gemini)
* Inference: Can use the provider's model name in addition to the HF alias
* Inference: Fixed issues with calling tools that weren't specified in the prompt
* RAG: Improved system prompt for RAG and no more need for hard-coded rag-tool calling
* Embeddings: Added support for Nemo retriever embedding models
* Tools: Added support for MCP tools in Ollama Distribution
* Distributions: Added new Groq distribution
### Customize Models
* Save post-trained checkpoint in SafeTensor format to allow Ollama inference provider to use the post-trained model
### Monitor agents
* More comprehensive logging of agent steps including client tools
* Telemetry inputs/outputs are now structured and queryable
* Ability to retrieve agents session, turn, step by ids
### Better Engineering
* Moved executorch Swift code out of this repo into the llama-stack-client-swift repo, similar to kotlin
* Move most logging to use logger instead of prints
* Completed text /chat-completion and /completion tests
---
# v0.1.4
Published on: 2025-02-25T00:02:43Z
## v0.1.4 Release Notes
Here are the key changes coming as part of this release:
### Build and Test Agents
* Inference: Added support for non-llama models
* Inference: Added option to list all downloaded models and remove models
* Agent: Introduce new api agents.resume_turn to include client side tool execution in the same turn
* Agent: AgentConfig introduces new variable “tool_config” that allows for better tool configuration and system prompt overrides
* Agent: Added logging for agent step start and completion times
* Agent: Added support for logging for tool execution metadata
* Embedding: Updated /inference/embeddings to support asymmetric models, truncation and variable sized outputs
* Embedding: Updated embedding models for Ollama, Together, and Fireworks with available defaults
* VectorIO: Improved performance of sqlite-vec using chunked writes
### Agent Evals and Model Customization
* Deprecated api /eval-tasks. Use /eval/benchmark instead
* Added CPU training support for TorchTune
### Deploy and Monitoring of Agents
* Consistent view of client and server tool calls in telemetry
### Better Engineering
* Made tests more data-driven for consistent evaluation
* Fixed documentation links and improved API reference generation
* Various small fixes for build scripts and system reliability
## v0.1.4 Release Notes
Here are the key changes coming as part of this release:
### Build and Test Agents
* Inference: Added support for non-llama models
* Inference: Added option to list all downloaded models and remove models
* Agent: Introduce new api agents.resume_turn to include client side tool execution in the same turn
* Agent: AgentConfig introduces new variable “tool_config” that allows for better tool configuration and system prompt overrides
* Agent: Added logging for agent step start and completion times
* Agent: Added support for logging for tool execution metadata
* Embedding: Updated /inference/embeddings to support asymmetric models, truncation and variable sized outputs
* Embedding: Updated embedding models for Ollama, Together, and Fireworks with available defaults
* VectorIO: Improved performance of sqlite-vec using chunked writes
### Agent Evals and Model Customization
* Deprecated api /eval-tasks. Use /eval/benchmark instead
* Added CPU training support for TorchTune
### Deploy and Monitoring of Agents
* Consistent view of client and server tool calls in telemetry
### Better Engineering
* Made tests more data-driven for consistent evaluation
* Fixed documentation links and improved API reference generation
* Various small fixes for build scripts and system reliability
---
# v0.1.3
Published on: 2025-02-14T20:24:32Z
## v0.1.3 Release
Here are some key changes that are coming as part of this release.
### Build and Test Agents
Streamlined the initial development experience
- Added support for llama stack run --image-type venv
- Enhanced vector store options with new sqlite-vec provider and improved Qdrant integration
- vLLM improvements for tool calling and logprobs
- Better handling of sporadic code_interpreter tool calls
### Agent Evals
Better benchmarking and Agent performance assessment
- Renamed eval API /eval-task to /benchmarks
- Improved documentation and notebooks for RAG and evals
### Deploy and Monitoring of Agents
Improved production readiness
- Added usage metrics collection for chat completions
- CLI improvements for provider information
- Improved error handling and system reliability
- Better model endpoint handling and accessibility
- Improved signal handling on distro server
### Better Engineering
Infrastructure and code quality improvements
- Faster text-based chat completion tests
- Improved testing for non-streaming agent apis
- Standardized import formatting with ruff linter
- Added conventional commits standard
- Fixed documentation parsing issues
## v0.1.3 Release
Here are some key changes that are coming as part of this release.
### Build and Test Agents
Streamlined the initial development experience
- Added support for llama stack run --image-type venv
- Enhanced vector store options with new sqlite-vec provider and improved Qdrant integration
- vLLM improvements for tool calling and logprobs
- Better handling of sporadic code_interpreter tool calls
### Agent Evals
Better benchmarking and Agent performance assessment
- Renamed eval API /eval-task to /benchmarks
- Improved documentation and notebooks for RAG and evals
### Deploy and Monitoring of Agents
Improved production readiness
- Added usage metrics collection for chat completions
- CLI improvements for provider information
- Improved error handling and system reliability
- Better model endpoint handling and accessibility
- Improved signal handling on distro server
### Better Engineering
Infrastructure and code quality improvements
- Faster text-based chat completion tests
- Improved testing for non-streaming agent apis
- Standardized import formatting with ruff linter
- Added conventional commits standard
- Fixed documentation parsing issues
---
# v0.1.2
Published on: 2025-02-07T22:06:49Z
# TL;DR
- Several stabilizations to development flows after the switch to `uv`
- Migrated CI workflows to new OSS repo - [llama-stack-ops](https://github.com/meta-llama/llama-stack-ops)
- Added automated rebuilds for ReadTheDocs
- Llama Stack server supports HTTPS
- Added system prompt overrides support
- Several bug fixes and improvements to documentation (check out Kubernetes deployment guide by @terrytangyuan )
# TL;DR
- Several stabilizations to development flows after the switch to `uv`
- Migrated CI workflows to new OSS repo - [llama-stack-ops](https://github.com/meta-llama/llama-stack-ops)
- Added automated rebuilds for ReadTheDocs
- Llama Stack server supports HTTPS
- Added system prompt overrides support
- Several bug fixes and improvements to documentation (check out Kubernetes deployment guide by @terrytangyuan )
---
# v0.1.1
Published on: 2025-02-02T02:29:24Z
A bunch of small / big improvements everywhere including support for Windows, switching to `uv` and many provider improvements.
A bunch of small / big improvements everywhere including support for Windows, switching to `uv` and many provider improvements.
---
# v0.1.0
Published on: 2025-01-24T17:47:47Z
We are excited to announce a stable API release of Llama Stack, which enables developers to build RAG applications and Agents using tools and safety shields, monitor and those agents with telemetry, and evaluate the agent with scoring functions.
## Context
GenAI application developers need more than just an LLM - they need to integrate tools, connect with their data sources, establish guardrails, and ground the LLM responses effectively. Currently, developers must piece together various tools and APIs, complicating the development lifecycle and increasing costs. The result is that developers are spending more time on these integrations rather than focusing on the application logic itself. The bespoke coupling of components also makes it challenging to adopt state-of-the-art solutions in the rapidly evolving GenAI space. This is particularly difficult for open models like Llama, as best practices are not widely established in the open.
Llama Stack was created to provide developers with a comprehensive and coherent interface that simplifies AI application development and codifies best practices across the Llama ecosystem. Since our launch in September 2024, we have seen a huge uptick in interest in Llama Stack APIs by both AI developers and from partners building AI services with Llama models. Partners like Nvidia, Fireworks, and Ollama have collaborated with us to develop implementations across various APIs, including inference, memory, and safety.
With Llama Stack, you can easily build a RAG agent which can also search the web, do complex math, and custom tool calling. You can use telemetry to inspect those traces, and convert telemetry into evals datasets. And with Llama Stacks plugin architecture and prepackage distributions, you choose to run your agent anywhere - in the cloud with our partners, deploy your own environment using virtualenv, conda, or Docker, operate locally with Ollama, or even run on mobile devices with our SDKs. Llama Stack offers unprecedented flexibility while also simplifying the developer experience.
## Release
After iterating on the APIs for the last 3 months, today were launching a stable release (V1) of the Llama Stack APIs and the corresponding llama-stack server and client packages(v0.1.0). We now have automated tests for providers. These tests make sure that all provider implementations are verified. Developers can now easily and reliably select distributions or providers based on their specific requirements.
There are example standalone apps in llama-stack-apps.
## Key Features of this release
- **Unified API Layer**
- Inference: Run LLM models
- RAG: Store and retrieve knowledge for RAG
- Agents: Build multi-step agentic workflows
- Tools: Register tools that can be called by the agent
- Safety: Apply content filtering and safety policies
- Evaluation: Test model and agent quality
- Telemetry: Collect and analyze usage data and complex agentic traces
- Post Training ( Coming Soon ): Fine tune models for specific use cases
- **Rich Provider Ecosystem**
- Local Development: Meta's Reference, Ollama
- Cloud: Fireworks, Together, Nvidia, AWS Bedrock, Groq, Cerebras
- On-premises: Nvidia NIM, vLLM, TGI, Dell-TGI
- On-device: iOS and Android support
- **Built for Production**
- Pre-packaged distributions for common deployment scenarios
- Backwards compatibility across model versions
- Comprehensive evaluation capabilities
- Full observability and monitoring
- **Multiple developer interfaces**
- CLI: Command line interface
- Python SDK
- Swift iOS SDK
- Kotlin Android SDK
- **Sample llama stack applications**
- Python
- iOS
- Android
We are excited to announce a stable API release of Llama Stack, which enables developers to build RAG applications and Agents using tools and safety shields, monitor and those agents with telemetry, and evaluate the agent with scoring functions.
## Context
GenAI application developers need more than just an LLM - they need to integrate tools, connect with their data sources, establish guardrails, and ground the LLM responses effectively. Currently, developers must piece together various tools and APIs, complicating the development lifecycle and increasing costs. The result is that developers are spending more time on these integrations rather than focusing on the application logic itself. The bespoke coupling of components also makes it challenging to adopt state-of-the-art solutions in the rapidly evolving GenAI space. This is particularly difficult for open models like Llama, as best practices are not widely established in the open.
Llama Stack was created to provide developers with a comprehensive and coherent interface that simplifies AI application development and codifies best practices across the Llama ecosystem. Since our launch in September 2024, we have seen a huge uptick in interest in Llama Stack APIs by both AI developers and from partners building AI services with Llama models. Partners like Nvidia, Fireworks, and Ollama have collaborated with us to develop implementations across various APIs, including inference, memory, and safety.
With Llama Stack, you can easily build a RAG agent which can also search the web, do complex math, and custom tool calling. You can use telemetry to inspect those traces, and convert telemetry into evals datasets. And with Llama Stacks plugin architecture and prepackage distributions, you choose to run your agent anywhere - in the cloud with our partners, deploy your own environment using virtualenv, conda, or Docker, operate locally with Ollama, or even run on mobile devices with our SDKs. Llama Stack offers unprecedented flexibility while also simplifying the developer experience.
## Release
After iterating on the APIs for the last 3 months, today were launching a stable release (V1) of the Llama Stack APIs and the corresponding llama-stack server and client packages(v0.1.0). We now have automated tests for providers. These tests make sure that all provider implementations are verified. Developers can now easily and reliably select distributions or providers based on their specific requirements.
There are example standalone apps in llama-stack-apps.
## Key Features of this release
- **Unified API Layer**
- Inference: Run LLM models
- RAG: Store and retrieve knowledge for RAG
- Agents: Build multi-step agentic workflows
- Tools: Register tools that can be called by the agent
- Safety: Apply content filtering and safety policies
- Evaluation: Test model and agent quality
- Telemetry: Collect and analyze usage data and complex agentic traces
- Post Training ( Coming Soon ): Fine tune models for specific use cases
- **Rich Provider Ecosystem**
- Local Development: Meta's Reference, Ollama
- Cloud: Fireworks, Together, Nvidia, AWS Bedrock, Groq, Cerebras
- On-premises: Nvidia NIM, vLLM, TGI, Dell-TGI
- On-device: iOS and Android support
- **Built for Production**
- Pre-packaged distributions for common deployment scenarios
- Backwards compatibility across model versions
- Comprehensive evaluation capabilities
- Full observability and monitoring
- **Multiple developer interfaces**
- CLI: Command line interface
- Python SDK
- Swift iOS SDK
- Kotlin Android SDK
- **Sample llama stack applications**
- Python
- iOS
- Android
---
@ -407,8 +407,8 @@ Published on: 2025-01-22T22:24:01Z
# v0.0.63
Published on: 2024-12-18T07:17:43Z
A small but important bug-fix release to update the URL datatype for the client-SDKs. The issue affected multimodal agentic turns especially.
A small but important bug-fix release to update the URL datatype for the client-SDKs. The issue affected multimodal agentic turns especially.
**Full Changelog**: https://github.com/meta-llama/llama-stack/compare/v0.0.62...v0.0.63
---
@ -444,39 +444,40 @@ Published on: 2024-11-22T00:36:09Z
# v0.0.53
Published on: 2024-11-20T22:18:00Z
🚀 Initial Release Notes for Llama Stack!
### Added
- Resource-oriented design for models, shields, memory banks, datasets and eval tasks
- Persistence for registered objects with distribution
- Ability to persist memory banks created for FAISS
- PostgreSQL KVStore implementation
- Environment variable placeholder support in run.yaml files
- Comprehensive Zero-to-Hero notebooks and quickstart guides
- Support for quantized models in Ollama
- Vision models support for Together, Fireworks, Meta-Reference, and Ollama, and vLLM
- Bedrock distribution with safety shields support
- Evals API with task registration and scoring functions
- MMLU and SimpleQA benchmark scoring functions
- Huggingface dataset provider integration for benchmarks
- Support for custom dataset registration from local paths
- Benchmark evaluation CLI tools with visualization tables
- RAG evaluation scoring functions and metrics
- Local persistence for datasets and eval tasks
### Changed
- Split safety into distinct providers (llama-guard, prompt-guard, code-scanner)
- Changed provider naming convention (`impls``inline`, `adapters``remote`)
- Updated API signatures for dataset and eval task registration
- Restructured folder organization for providers
- Enhanced Docker build configuration
- Added version prefixing for REST API routes
- Enhanced evaluation task registration workflow
- Improved benchmark evaluation output formatting
- Restructured evals folder organization for better modularity
### Removed
- `llama stack configure` command
🚀 Initial Release Notes for Llama Stack!
### Added
- Resource-oriented design for models, shields, memory banks, datasets and eval tasks
- Persistence for registered objects with distribution
- Ability to persist memory banks created for FAISS
- PostgreSQL KVStore implementation
- Environment variable placeholder support in run.yaml files
- Comprehensive Zero-to-Hero notebooks and quickstart guides
- Support for quantized models in Ollama
- Vision models support for Together, Fireworks, Meta-Reference, and Ollama, and vLLM
- Bedrock distribution with safety shields support
- Evals API with task registration and scoring functions
- MMLU and SimpleQA benchmark scoring functions
- Huggingface dataset provider integration for benchmarks
- Support for custom dataset registration from local paths
- Benchmark evaluation CLI tools with visualization tables
- RAG evaluation scoring functions and metrics
- Local persistence for datasets and eval tasks
### Changed
- Split safety into distinct providers (llama-guard, prompt-guard, code-scanner)
- Changed provider naming convention (`impls``inline`, `adapters``remote`)
- Updated API signatures for dataset and eval task registration
- Restructured folder organization for providers
- Enhanced Docker build configuration
- Added version prefixing for REST API routes
- Enhanced evaluation task registration workflow
- Improved benchmark evaluation output formatting
- Restructured evals folder organization for better modularity
### Removed
- `llama stack configure` command
---

View file

@ -167,11 +167,14 @@ If you have made changes to a provider's configuration in any form (introducing
If you are making changes to the documentation at [https://llama-stack.readthedocs.io/en/latest/](https://llama-stack.readthedocs.io/en/latest/), you can use the following command to build the documentation and preview your changes. You will need [Sphinx](https://www.sphinx-doc.org/en/master/) and the readthedocs theme.
```bash
cd docs
uv sync --extra docs
# This rebuilds the documentation pages.
uv run --group docs make -C docs/ html
uv run make html
# This will start a local server (usually at http://127.0.0.1:8000) that automatically rebuilds and refreshes when you make changes to the documentation.
uv run --group docs sphinx-autobuild docs/source docs/build/html --write-all
uv run sphinx-autobuild source build/html --write-all
```
### Update API Documentation
@ -179,7 +182,7 @@ uv run --group docs sphinx-autobuild docs/source docs/build/html --write-all
If you modify or add new API endpoints, update the API documentation accordingly. You can do this by running the following command:
```bash
uv run ./docs/openapi_generator/run_openapi_generator.sh
uv run --with ".[dev]" ./docs/openapi_generator/run_openapi_generator.sh
```
The generated API documentation will be available in `docs/_static/`. Make sure to review the changes before committing.

View file

@ -1,4 +1,5 @@
include pyproject.toml
include llama_stack/templates/dependencies.json
include llama_stack/models/llama/llama3/tokenizer.model
include llama_stack/models/llama/llama4/tokenizer.model
include llama_stack/distribution/*.sh

View file

@ -107,29 +107,26 @@ By reducing friction and complexity, Llama Stack empowers developers to focus on
### API Providers
Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.
| **API Provider Builder** | **Environments** | **Agents** | **Inference** | **Memory** | **Safety** | **Telemetry** | **Post Training** |
|:------------------------:|:----------------------:|:----------:|:-------------:|:----------:|:----------:|:-------------:|:-----------------:|
| Meta Reference | Single Node | ✅ | ✅ | ✅ | ✅ | ✅ | |
| SambaNova | Hosted | | ✅ | | ✅ | | |
| Cerebras | Hosted | | ✅ | | | | |
| Fireworks | Hosted | ✅ | ✅ | ✅ | | | |
| AWS Bedrock | Hosted | | ✅ | | ✅ | | |
| Together | Hosted | ✅ | ✅ | | ✅ | | |
| Groq | Hosted | | ✅ | | | | |
| Ollama | Single Node | | ✅ | | | | |
| TGI | Hosted and Single Node | | ✅ | | | | |
| NVIDIA NIM | Hosted and Single Node | | ✅ | | | | |
| Chroma | Single Node | | | ✅ | | | |
| PG Vector | Single Node | | | ✅ | | | |
| PyTorch ExecuTorch | On-device iOS | ✅ | ✅ | | | | |
| vLLM | Hosted and Single Node | | ✅ | | | | |
| OpenAI | Hosted | | ✅ | | | | |
| Anthropic | Hosted | | ✅ | | | | |
| Gemini | Hosted | | ✅ | | | | |
| watsonx | Hosted | | ✅ | | | | |
| HuggingFace | Single Node | | | | | | ✅ |
| TorchTune | Single Node | | | | | | ✅ |
| NVIDIA NEMO | Hosted | | | | | | ✅ |
| **API Provider Builder** | **Environments** | **Agents** | **Inference** | **Memory** | **Safety** | **Telemetry** |
|:------------------------:|:----------------------:|:----------:|:-------------:|:----------:|:----------:|:-------------:|
| Meta Reference | Single Node | ✅ | ✅ | ✅ | ✅ | ✅ |
| SambaNova | Hosted | | ✅ | | | |
| Cerebras | Hosted | | ✅ | | | |
| Fireworks | Hosted | ✅ | ✅ | ✅ | | |
| AWS Bedrock | Hosted | | ✅ | | ✅ | |
| Together | Hosted | ✅ | ✅ | | ✅ | |
| Groq | Hosted | | ✅ | | | |
| Ollama | Single Node | | ✅ | | | |
| TGI | Hosted and Single Node | | ✅ | | | |
| NVIDIA NIM | Hosted and Single Node | | ✅ | | | |
| Chroma | Single Node | | | ✅ | | |
| PG Vector | Single Node | | | ✅ | | |
| PyTorch ExecuTorch | On-device iOS | ✅ | ✅ | | | |
| vLLM | Hosted and Single Node | | ✅ | | | |
| OpenAI | Hosted | | ✅ | | | |
| Anthropic | Hosted | | ✅ | | | |
| Gemini | Hosted | | ✅ | | | |
| watsonx | Hosted | | ✅ | | | |
### Distributions

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -759,7 +759,7 @@ class Generator:
)
return Operation(
tags=[getattr(op.defining_class, "API_NAMESPACE", op.defining_class.__name__)],
tags=[op.defining_class.__name__],
summary=None,
# summary=doc_string.short_description,
description=description,
@ -805,8 +805,6 @@ class Generator:
operation_tags: List[Tag] = []
for cls in endpoint_classes:
doc_string = parse_type(cls)
if hasattr(cls, "API_NAMESPACE") and cls.API_NAMESPACE != cls.__name__:
continue
operation_tags.append(
Tag(
name=cls.__name__,

View file

@ -3,10 +3,10 @@
Here's a collection of comprehensive guides, examples, and resources for building AI applications with Llama Stack. For the complete documentation, visit our [ReadTheDocs page](https://llama-stack.readthedocs.io/en/latest/index.html).
## Render locally
From the llama-stack root directory, run the following command to render the docs locally:
```bash
uv run --group docs sphinx-autobuild docs/source docs/build/html --write-all
pip install -r requirements.txt
cd docs
python -m sphinx_autobuild source _build
```
You can open up the docs in your browser at http://localhost:8000

16
docs/requirements.txt Normal file
View file

@ -0,0 +1,16 @@
linkify
myst-parser
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
sphinx==8.1.3
sphinx-copybutton
sphinx-design
sphinx-pdj-theme
sphinx-rtd-theme>=1.0.0
sphinx-tabs
sphinx_autobuild
sphinx_rtd_dark_mode
sphinxcontrib-mermaid
sphinxcontrib-openapi
sphinxcontrib-redoc
sphinxcontrib-video
tomli

View file

@ -57,31 +57,6 @@ chunks = [
]
client.vector_io.insert(vector_db_id=vector_db_id, chunks=chunks)
```
#### Using Precomputed Embeddings
If you decide to precompute embeddings for your documents, you can insert them directly into the vector database by
including the embedding vectors in the chunk data. This is useful if you have a separate embedding service or if you
want to customize the ingestion process.
```python
chunks_with_embeddings = [
{
"content": "First chunk of text",
"mime_type": "text/plain",
"embedding": [0.1, 0.2, 0.3, ...], # Your precomputed embedding vector
"metadata": {"document_id": "doc1", "section": "introduction"},
},
{
"content": "Second chunk of text",
"mime_type": "text/plain",
"embedding": [0.2, 0.3, 0.4, ...], # Your precomputed embedding vector
"metadata": {"document_id": "doc1", "section": "methodology"},
},
]
client.vector_io.insert(vector_db_id=vector_db_id, chunks=chunks_with_embeddings)
```
When providing precomputed embeddings, ensure the embedding dimension matches the embedding_dimension specified when
registering the vector database.
### Retrieval
You can query the vector database to retrieve documents based on their embeddings.
```python

View file

@ -22,11 +22,7 @@ from docutils import nodes
# Read version from pyproject.toml
with Path(__file__).parent.parent.parent.joinpath("pyproject.toml").open("rb") as f:
pypi_url = "https://pypi.org/pypi/llama-stack/json"
headers = {
'User-Agent': 'pip/23.0.1 (python 3.11)', # Mimic pip's user agent
'Accept': 'application/json'
}
version_tag = json.loads(requests.get(pypi_url, headers=headers).text)["info"]["version"]
version_tag = json.loads(requests.get(pypi_url).text)["info"]["version"]
print(f"{version_tag=}")
# generate the full link including text and url here
@ -57,6 +53,14 @@ myst_enable_extensions = ["colon_fence"]
html_theme = "sphinx_rtd_theme"
html_use_relative_paths = True
# html_theme = "sphinx_pdj_theme"
# html_theme_path = [sphinx_pdj_theme.get_html_theme_path()]
# html_theme = "pytorch_sphinx_theme"
# html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()]
templates_path = ["_templates"]
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]

View file

@ -338,48 +338,6 @@ INFO: Application startup complete.
INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
INFO: 2401:db00:35c:2d2b:face:0:c9:0:54678 - "GET /models/list HTTP/1.1" 200 OK
```
### Listing Distributions
Using the list command, you can view all existing Llama Stack distributions, including stacks built from templates, from scratch, or using custom configuration files.
```
llama stack list -h
usage: llama stack list [-h]
list the build stacks
options:
-h, --help show this help message and exit
```
Example Usage
```
llama stack list
```
### Removing a Distribution
Use the remove command to delete a distribution you've previously built.
```
llama stack rm -h
usage: llama stack rm [-h] [--all] [name]
Remove the build stack
positional arguments:
name Name of the stack to delete (default: None)
options:
-h, --help show this help message and exit
--all, -a Delete all stacks (use with caution) (default: False)
```
Example
```
llama stack rm llamastack-test
```
To keep your environment organized and avoid clutter, consider using `llama stack list` to review old or unused distributions and `llama stack rm <name>` to delete them when theyre no longer needed.
### Troubleshooting

View file

@ -118,6 +118,11 @@ server:
port: 8321 # Port to listen on (default: 8321)
tls_certfile: "/path/to/cert.pem" # Optional: Path to TLS certificate for HTTPS
tls_keyfile: "/path/to/key.pem" # Optional: Path to TLS key for HTTPS
auth: # Optional: Authentication configuration
provider_type: "kubernetes" # Type of auth provider
config: # Provider-specific configuration
api_server_url: "https://kubernetes.default.svc"
ca_cert_path: "/path/to/ca.crt" # Optional: Path to CA certificate
```
### Authentication Configuration
@ -130,7 +135,7 @@ Authorization: Bearer <token>
The server supports multiple authentication providers:
#### OAuth 2.0/OpenID Connect Provider with Kubernetes
#### Kubernetes Provider
The Kubernetes cluster must be configured to use a service account for authentication.
@ -141,67 +146,14 @@ kubectl create rolebinding llama-stack-auth-rolebinding --clusterrole=admin --se
kubectl create token llama-stack-auth -n llama-stack > llama-stack-auth-token
```
Make sure the `kube-apiserver` runs with `--anonymous-auth=true` to allow unauthenticated requests
and that the correct RoleBinding is created to allow the service account to access the necessary
resources. If that is not the case, you can create a RoleBinding for the service account to access
the necessary resources:
```yaml
# allow-anonymous-openid.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: allow-anonymous-openid
rules:
- nonResourceURLs: ["/openid/v1/jwks"]
verbs: ["get"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: allow-anonymous-openid
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: allow-anonymous-openid
subjects:
- kind: User
name: system:anonymous
apiGroup: rbac.authorization.k8s.io
```
And then apply the configuration:
```bash
kubectl apply -f allow-anonymous-openid.yaml
```
Validates tokens against the Kubernetes API server through the OIDC provider:
Validates tokens against the Kubernetes API server:
```yaml
server:
auth:
provider_type: "oauth2_token"
provider_type: "kubernetes"
config:
jwks:
uri: "https://kubernetes.default.svc"
key_recheck_period: 3600
tls_cafile: "/path/to/ca.crt"
issuer: "https://kubernetes.default.svc"
audience: "https://kubernetes.default.svc"
```
To find your cluster's audience, run:
```bash
kubectl create token default --duration=1h | cut -d. -f2 | base64 -d | jq .aud
```
For the issuer, you can use the OIDC provider's URL:
```bash
kubectl get --raw /.well-known/openid-configuration| jq .issuer
```
For the tls_cafile, you can use the CA certificate of the OIDC provider:
```bash
kubectl config view --minify -o jsonpath='{.clusters[0].cluster.certificate-authority}'
api_server_url: "https://kubernetes.default.svc" # URL of the Kubernetes API server
ca_cert_path: "/path/to/ca.crt" # Optional: Path to CA certificate
```
The provider extracts user information from the JWT token:
@ -256,80 +208,6 @@ And must respond with:
If no access attributes are returned, the token is used as a namespace.
### Quota Configuration
The `quota` section allows you to enable server-side request throttling for both
authenticated and anonymous clients. This is useful for preventing abuse, enforcing
fairness across tenants, and controlling infrastructure costs without requiring
client-side rate limiting or external proxies.
Quotas are disabled by default. When enabled, each client is tracked using either:
* Their authenticated `client_id` (derived from the Bearer token), or
* Their IP address (fallback for anonymous requests)
Quota state is stored in a SQLite-backed key-value store, and rate limits are applied
within a configurable time window (currently only `day` is supported).
#### Example
```yaml
server:
quota:
kvstore:
type: sqlite
db_path: ./quotas.db
anonymous_max_requests: 100
authenticated_max_requests: 1000
period: day
```
#### Configuration Options
| Field | Description |
| ---------------------------- | -------------------------------------------------------------------------- |
| `kvstore` | Required. Backend storage config for tracking request counts. |
| `kvstore.type` | Must be `"sqlite"` for now. Other backends may be supported in the future. |
| `kvstore.db_path` | File path to the SQLite database. |
| `anonymous_max_requests` | Max requests per period for unauthenticated clients. |
| `authenticated_max_requests` | Max requests per period for authenticated clients. |
| `period` | Time window for quota enforcement. Only `"day"` is supported. |
> Note: if `authenticated_max_requests` is set but no authentication provider is
configured, the server will fall back to applying `anonymous_max_requests` to all
clients.
#### Example with Authentication Enabled
```yaml
server:
port: 8321
auth:
provider_type: custom
config:
endpoint: https://auth.example.com/validate
quota:
kvstore:
type: sqlite
db_path: ./quotas.db
anonymous_max_requests: 100
authenticated_max_requests: 1000
period: day
```
If a client exceeds their limit, the server responds with:
```http
HTTP/1.1 429 Too Many Requests
Content-Type: application/json
{
"error": {
"message": "Quota exceeded"
}
}
```
## Extending to handle Safety
Configuring Safety can be a little involved so it is instructive to go through an example.

View file

@ -172,7 +172,7 @@ spec:
- name: llama-stack
image: localhost/llama-stack-run-k8s:latest
imagePullPolicy: IfNotPresent
command: ["python", "-m", "llama_stack.distribution.server.server", "--config", "/app/config.yaml"]
command: ["python", "-m", "llama_stack.distribution.server.server", "--yaml-config", "/app/config.yaml"]
ports:
- containerPort: 5000
volumeMounts:

View file

@ -70,7 +70,7 @@ docker run \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-watsonx \
--config /root/my-run.yaml \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env WATSONX_API_KEY=$WATSONX_API_KEY \
--env WATSONX_PROJECT_ID=$WATSONX_PROJECT_ID \

View file

@ -52,7 +52,7 @@ docker run \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-cerebras \
--config /root/my-run.yaml \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env CEREBRAS_API_KEY=$CEREBRAS_API_KEY
```

View file

@ -155,7 +155,7 @@ docker run \
-v $HOME/.llama:/root/.llama \
-v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-dell \
--config /root/my-run.yaml \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env DEH_URL=$DEH_URL \

View file

@ -143,7 +143,7 @@ docker run \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-nvidia \
--config /root/my-run.yaml \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
```

View file

@ -19,7 +19,6 @@ The `llamastack/distribution-ollama` distribution consists of the following prov
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::ollama` |
| post_training | `inline::huggingface` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
@ -98,7 +97,7 @@ docker run \
-v ~/.llama:/root/.llama \
-v ./llama_stack/templates/ollama/run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-ollama \
--config /root/my-run.yaml \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env SAFETY_MODEL=$SAFETY_MODEL \

View file

@ -233,7 +233,7 @@ docker run \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./llama_stack/templates/remote-vllm/run.yaml:/root/my-run.yaml \
llamastack/distribution-remote-vllm \
--config /root/my-run.yaml \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1
@ -255,7 +255,7 @@ docker run \
-v ~/.llama:/root/.llama \
-v ./llama_stack/templates/remote-vllm/run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-remote-vllm \
--config /root/my-run.yaml \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1 \

View file

@ -17,7 +17,7 @@ The `llamastack/distribution-sambanova` distribution consists of the following p
|-----|-------------|
| agents | `inline::meta-reference` |
| inference | `remote::sambanova`, `inline::sentence-transformers` |
| safety | `remote::sambanova` |
| safety | `inline::llama-guard` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
@ -48,44 +48,33 @@ The following models are available by default:
### Prerequisite: API Keys
Make sure you have access to a SambaNova API Key. You can get one by visiting [SambaNova.ai](http://cloud.sambanova.ai?utm_source=llamastack&utm_medium=external&utm_campaign=cloud_signup).
Make sure you have access to a SambaNova API Key. You can get one by visiting [SambaNova.ai](https://sambanova.ai/).
## Running Llama Stack with SambaNova
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=8321
llama stack build --template sambanova --image-type container
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
distribution-sambanova \
llamastack/distribution-sambanova \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```
### Via Venv
```bash
llama stack build --template sambanova --image-type venv
llama stack run --image-type venv ~/.llama/distributions/sambanova/sambanova-run.yaml \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```
### Via Conda
```bash
llama stack build --template sambanova --image-type conda
llama stack run --image-type conda ~/.llama/distributions/sambanova/sambanova-run.yaml \
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```

View file

@ -117,7 +117,7 @@ docker run \
-v ~/.llama:/root/.llama \
-v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-tgi \
--config /root/my-run.yaml \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT \

View file

@ -30,18 +30,6 @@ Runs inference with an LLM.
## Post Training
Fine-tunes a model.
#### Post Training Providers
The following providers are available for Post Training:
```{toctree}
:maxdepth: 1
external
post_training/huggingface
post_training/torchtune
post_training/nvidia_nemo
```
## Safety
Applies safety policies to the output at a Systems (not only model) level.

View file

@ -1,122 +0,0 @@
---
orphan: true
---
# HuggingFace SFTTrainer
[HuggingFace SFTTrainer](https://huggingface.co/docs/trl/en/sft_trainer) is an inline post training provider for Llama Stack. It allows you to run supervised fine tuning on a variety of models using many datasets
## Features
- Simple access through the post_training API
- Fully integrated with Llama Stack
- GPU support, CPU support, and MPS support (MacOS Metal Performance Shaders)
## Usage
To use the HF SFTTrainer in your Llama Stack project, follow these steps:
1. Configure your Llama Stack project to use this provider.
2. Kick off a SFT job using the Llama Stack post_training API.
## Setup
You can access the HuggingFace trainer via the `ollama` distribution:
```bash
llama stack build --template ollama --image-type venv
llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
```
## Run Training
You can access the provider and the `supervised_fine_tune` method via the post_training API:
```python
import time
import uuid
from llama_stack_client.types import (
post_training_supervised_fine_tune_params,
algorithm_config_param,
)
def create_http_client():
from llama_stack_client import LlamaStackClient
return LlamaStackClient(base_url="http://localhost:8321")
client = create_http_client()
# Example Dataset
client.datasets.register(
purpose="post-training/messages",
source={
"type": "uri",
"uri": "huggingface://datasets/llamastack/simpleqa?split=train",
},
dataset_id="simpleqa",
)
training_config = post_training_supervised_fine_tune_params.TrainingConfig(
data_config=post_training_supervised_fine_tune_params.TrainingConfigDataConfig(
batch_size=32,
data_format="instruct",
dataset_id="simpleqa",
shuffle=True,
),
gradient_accumulation_steps=1,
max_steps_per_epoch=0,
max_validation_steps=1,
n_epochs=4,
)
algorithm_config = algorithm_config_param.LoraFinetuningConfig( # this config is also currently mandatory but should not be
alpha=1,
apply_lora_to_mlp=True,
apply_lora_to_output=False,
lora_attn_modules=["q_proj"],
rank=1,
type="LoRA",
)
job_uuid = f"test-job{uuid.uuid4()}"
# Example Model
training_model = "ibm-granite/granite-3.3-8b-instruct"
start_time = time.time()
response = client.post_training.supervised_fine_tune(
job_uuid=job_uuid,
logger_config={},
model=training_model,
hyperparam_search_config={},
training_config=training_config,
algorithm_config=algorithm_config,
checkpoint_dir="output",
)
print("Job: ", job_uuid)
# Wait for the job to complete!
while True:
status = client.post_training.job.status(job_uuid=job_uuid)
if not status:
print("Job not found")
break
print(status)
if status.status == "completed":
break
print("Waiting for job to complete...")
time.sleep(5)
end_time = time.time()
print("Job completed in", end_time - start_time, "seconds!")
print("Artifacts:")
print(client.post_training.job.artifacts(job_uuid=job_uuid))
```

View file

@ -1,163 +0,0 @@
---
orphan: true
---
# NVIDIA NEMO
[NVIDIA NEMO](https://developer.nvidia.com/nemo-framework) is a remote post training provider for Llama Stack. It provides enterprise-grade fine-tuning capabilities through NVIDIA's NeMo Customizer service.
## Features
- Enterprise-grade fine-tuning capabilities
- Support for LoRA and SFT fine-tuning
- Integration with NVIDIA's NeMo Customizer service
- Support for various NVIDIA-optimized models
- Efficient training with NVIDIA hardware acceleration
## Usage
To use NVIDIA NEMO in your Llama Stack project, follow these steps:
1. Configure your Llama Stack project to use this provider.
2. Set up your NVIDIA API credentials.
3. Kick off a fine-tuning job using the Llama Stack post_training API.
## Setup
You'll need to set the following environment variables:
```bash
export NVIDIA_API_KEY="your-api-key"
export NVIDIA_DATASET_NAMESPACE="default"
export NVIDIA_CUSTOMIZER_URL="your-customizer-url"
export NVIDIA_PROJECT_ID="your-project-id"
export NVIDIA_OUTPUT_MODEL_DIR="your-output-model-dir"
```
## Run Training
You can access the provider and the `supervised_fine_tune` method via the post_training API:
```python
import time
import uuid
from llama_stack_client.types import (
post_training_supervised_fine_tune_params,
algorithm_config_param,
)
def create_http_client():
from llama_stack_client import LlamaStackClient
return LlamaStackClient(base_url="http://localhost:8321")
client = create_http_client()
# Example Dataset
client.datasets.register(
purpose="post-training/messages",
source={
"type": "uri",
"uri": "huggingface://datasets/llamastack/simpleqa?split=train",
},
dataset_id="simpleqa",
)
training_config = post_training_supervised_fine_tune_params.TrainingConfig(
data_config=post_training_supervised_fine_tune_params.TrainingConfigDataConfig(
batch_size=8, # Default batch size for NEMO
data_format="instruct",
dataset_id="simpleqa",
shuffle=True,
),
n_epochs=50, # Default epochs for NEMO
optimizer_config=post_training_supervised_fine_tune_params.TrainingConfigOptimizerConfig(
lr=0.0001, # Default learning rate
weight_decay=0.01, # NEMO-specific parameter
),
# NEMO-specific parameters
log_every_n_steps=None,
val_check_interval=0.25,
sequence_packing_enabled=False,
hidden_dropout=None,
attention_dropout=None,
ffn_dropout=None,
)
algorithm_config = algorithm_config_param.LoraFinetuningConfig(
alpha=16, # Default alpha for NEMO
type="LoRA",
)
job_uuid = f"test-job{uuid.uuid4()}"
# Example Model - must be a supported NEMO model
training_model = "meta/llama-3.1-8b-instruct"
start_time = time.time()
response = client.post_training.supervised_fine_tune(
job_uuid=job_uuid,
logger_config={},
model=training_model,
hyperparam_search_config={},
training_config=training_config,
algorithm_config=algorithm_config,
checkpoint_dir="output",
)
print("Job: ", job_uuid)
# Wait for the job to complete!
while True:
status = client.post_training.job.status(job_uuid=job_uuid)
if not status:
print("Job not found")
break
print(status)
if status.status == "completed":
break
print("Waiting for job to complete...")
time.sleep(5)
end_time = time.time()
print("Job completed in", end_time - start_time, "seconds!")
print("Artifacts:")
print(client.post_training.job.artifacts(job_uuid=job_uuid))
```
## Supported Models
Currently supports the following models:
- meta/llama-3.1-8b-instruct
- meta/llama-3.2-1b-instruct
## Supported Parameters
### TrainingConfig
- n_epochs (default: 50)
- data_config
- optimizer_config
- log_every_n_steps
- val_check_interval (default: 0.25)
- sequence_packing_enabled (default: False)
- hidden_dropout (0.0-1.0)
- attention_dropout (0.0-1.0)
- ffn_dropout (0.0-1.0)
### DataConfig
- dataset_id
- batch_size (default: 8)
### OptimizerConfig
- lr (default: 0.0001)
- weight_decay (default: 0.01)
### LoRA Config
- alpha (default: 16)
- type (must be "LoRA")
Note: Some parameters from the standard Llama Stack API are not supported and will be ignored with a warning.

View file

@ -1,125 +0,0 @@
---
orphan: true
---
# TorchTune
[TorchTune](https://github.com/pytorch/torchtune) is an inline post training provider for Llama Stack. It provides a simple and efficient way to fine-tune language models using PyTorch.
## Features
- Simple access through the post_training API
- Fully integrated with Llama Stack
- GPU support and single device capabilities.
- Support for LoRA
## Usage
To use TorchTune in your Llama Stack project, follow these steps:
1. Configure your Llama Stack project to use this provider.
2. Kick off a fine-tuning job using the Llama Stack post_training API.
## Setup
You can access the TorchTune trainer by writing your own yaml pointing to the provider:
```yaml
post_training:
- provider_id: torchtune
provider_type: inline::torchtune
config: {}
```
you can then build and run your own stack with this provider.
## Run Training
You can access the provider and the `supervised_fine_tune` method via the post_training API:
```python
import time
import uuid
from llama_stack_client.types import (
post_training_supervised_fine_tune_params,
algorithm_config_param,
)
def create_http_client():
from llama_stack_client import LlamaStackClient
return LlamaStackClient(base_url="http://localhost:8321")
client = create_http_client()
# Example Dataset
client.datasets.register(
purpose="post-training/messages",
source={
"type": "uri",
"uri": "huggingface://datasets/llamastack/simpleqa?split=train",
},
dataset_id="simpleqa",
)
training_config = post_training_supervised_fine_tune_params.TrainingConfig(
data_config=post_training_supervised_fine_tune_params.TrainingConfigDataConfig(
batch_size=32,
data_format="instruct",
dataset_id="simpleqa",
shuffle=True,
),
gradient_accumulation_steps=1,
max_steps_per_epoch=0,
max_validation_steps=1,
n_epochs=4,
)
algorithm_config = algorithm_config_param.LoraFinetuningConfig(
alpha=1,
apply_lora_to_mlp=True,
apply_lora_to_output=False,
lora_attn_modules=["q_proj"],
rank=1,
type="LoRA",
)
job_uuid = f"test-job{uuid.uuid4()}"
# Example Model
training_model = "meta-llama/Llama-2-7b-hf"
start_time = time.time()
response = client.post_training.supervised_fine_tune(
job_uuid=job_uuid,
logger_config={},
model=training_model,
hyperparam_search_config={},
training_config=training_config,
algorithm_config=algorithm_config,
checkpoint_dir="output",
)
print("Job: ", job_uuid)
# Wait for the job to complete!
while True:
status = client.post_training.job.status(job_uuid=job_uuid)
if not status:
print("Job not found")
break
print(status)
if status.status == "completed":
break
print("Waiting for job to complete...")
time.sleep(5)
end_time = time.time()
print("Job completed in", end_time - start_time, "seconds!")
print("Artifacts:")
print(client.post_training.job.artifacts(job_uuid=job_uuid))
```

View file

@ -66,25 +66,6 @@ To use sqlite-vec in your Llama Stack project, follow these steps:
2. Configure your Llama Stack project to use SQLite-Vec.
3. Start storing and querying vectors.
## Supported Search Modes
The sqlite-vec provider supports both vector-based and keyword-based (full-text) search modes.
When using the RAGTool interface, you can specify the desired search behavior via the `mode` parameter in
`RAGQueryConfig`. For example:
```python
from llama_stack.apis.tool_runtime.rag import RAGQueryConfig
query_config = RAGQueryConfig(max_chunks=6, mode="vector")
results = client.tool_runtime.rag_tool.query(
vector_db_ids=[vector_db_id],
content="what is torchtune",
query_config=query_config,
)
```
## Installation
You can install SQLite-Vec using pip:

View file

@ -1,6 +0,0 @@
#!/usr/bin/env bash
export USE_COPY_NOT_MOUNT=true
export LLAMA_STACK_DIR=.
uvx --from . llama stack build --template kvant --image-type container --image-name kvant

View file

@ -1,17 +0,0 @@
#!/usr/bin/env bash
export LLAMA_STACK_PORT=8321
# VLLM_API_TOKEN= env file
# KEYCLOAK_CLIENT_SECRET= env file
docker run -it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v $(pwd)/data:/root/.llama \
--mount type=bind,source="$(pwd)"/llama_stack/templates/kvant/run.yaml,target=/root/.llama/config.yaml,readonly \
--entrypoint python \
--env-file ./.env \
distribution-kvant:dev \
-m llama_stack.distribution.server.server --config /root/.llama/config.yaml \
--port $LLAMA_STACK_PORT \

View file

@ -13,7 +13,7 @@ from typing import Annotated, Any, Literal, Protocol, runtime_checkable
from pydantic import BaseModel, ConfigDict, Field
from llama_stack.apis.common.content_types import URL, ContentDelta, InterleavedContent
from llama_stack.apis.common.responses import Order, PaginatedResponse
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.inference import (
CompletionMessage,
ResponseFormat,
@ -31,8 +31,6 @@ from llama_stack.apis.tools import ToolDef
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
from .openai_responses import (
ListOpenAIResponseInputItem,
ListOpenAIResponseObject,
OpenAIResponseInput,
OpenAIResponseInputTool,
OpenAIResponseObject,
@ -581,14 +579,14 @@ class Agents(Protocol):
#
# Both of these APIs are inherently stateful.
@webmethod(route="/openai/v1/responses/{response_id}", method="GET")
@webmethod(route="/openai/v1/responses/{id}", method="GET")
async def get_openai_response(
self,
response_id: str,
id: str,
) -> OpenAIResponseObject:
"""Retrieve an OpenAI response by its ID.
:param response_id: The ID of the OpenAI response to retrieve.
:param id: The ID of the OpenAI response to retrieve.
:returns: An OpenAIResponseObject.
"""
...
@ -598,7 +596,6 @@ class Agents(Protocol):
self,
input: str | list[OpenAIResponseInput],
model: str,
instructions: str | None = None,
previous_response_id: str | None = None,
store: bool | None = True,
stream: bool | None = False,
@ -613,43 +610,3 @@ class Agents(Protocol):
:returns: An OpenAIResponseObject.
"""
...
@webmethod(route="/openai/v1/responses", method="GET")
async def list_openai_responses(
self,
after: str | None = None,
limit: int | None = 50,
model: str | None = None,
order: Order | None = Order.desc,
) -> ListOpenAIResponseObject:
"""List all OpenAI responses.
:param after: The ID of the last response to return.
:param limit: The number of responses to return.
:param model: The model to filter responses by.
:param order: The order to sort responses by when sorted by created_at ('asc' or 'desc').
:returns: A ListOpenAIResponseObject.
"""
...
@webmethod(route="/openai/v1/responses/{response_id}/input_items", method="GET")
async def list_openai_response_input_items(
self,
response_id: str,
after: str | None = None,
before: str | None = None,
include: list[str] | None = None,
limit: int | None = 20,
order: Order | None = Order.desc,
) -> ListOpenAIResponseInputItem:
"""List input items for a given OpenAI response.
:param response_id: The ID of the response to retrieve input items for.
:param after: An item ID to list items after, used for pagination.
:param before: An item ID to list items before, used for pagination.
:param include: Additional fields to include in the response.
:param limit: A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20.
:param order: The order to return the input items in. Default is desc.
:returns: An ListOpenAIResponseInputItem.
"""
...

View file

@ -10,9 +10,6 @@ from pydantic import BaseModel, Field
from llama_stack.schema_utils import json_schema_type, register_schema
# NOTE(ashwin): this file is literally a copy of the OpenAI responses API schema. We should probably
# take their YAML and generate this file automatically. Their YAML is available.
@json_schema_type
class OpenAIResponseError(BaseModel):
@ -82,45 +79,16 @@ class OpenAIResponseOutputMessageWebSearchToolCall(BaseModel):
@json_schema_type
class OpenAIResponseOutputMessageFunctionToolCall(BaseModel):
arguments: str
call_id: str
name: str
arguments: str
type: Literal["function_call"] = "function_call"
id: str | None = None
status: str | None = None
@json_schema_type
class OpenAIResponseOutputMessageMCPCall(BaseModel):
id: str
type: Literal["mcp_call"] = "mcp_call"
arguments: str
name: str
server_label: str
error: str | None = None
output: str | None = None
class MCPListToolsTool(BaseModel):
input_schema: dict[str, Any]
name: str
description: str | None = None
@json_schema_type
class OpenAIResponseOutputMessageMCPListTools(BaseModel):
id: str
type: Literal["mcp_list_tools"] = "mcp_list_tools"
server_label: str
tools: list[MCPListToolsTool]
status: str
OpenAIResponseOutput = Annotated[
OpenAIResponseMessage
| OpenAIResponseOutputMessageWebSearchToolCall
| OpenAIResponseOutputMessageFunctionToolCall
| OpenAIResponseOutputMessageMCPCall
| OpenAIResponseOutputMessageMCPListTools,
OpenAIResponseMessage | OpenAIResponseOutputMessageWebSearchToolCall | OpenAIResponseOutputMessageFunctionToolCall,
Field(discriminator="type"),
]
register_schema(OpenAIResponseOutput, name="OpenAIResponseOutput")
@ -149,16 +117,6 @@ class OpenAIResponseObjectStreamResponseCreated(BaseModel):
type: Literal["response.created"] = "response.created"
@json_schema_type
class OpenAIResponseObjectStreamResponseOutputTextDelta(BaseModel):
content_index: int
delta: str
item_id: str
output_index: int
sequence_number: int
type: Literal["response.output_text.delta"] = "response.output_text.delta"
@json_schema_type
class OpenAIResponseObjectStreamResponseCompleted(BaseModel):
response: OpenAIResponseObject
@ -166,9 +124,7 @@ class OpenAIResponseObjectStreamResponseCompleted(BaseModel):
OpenAIResponseObjectStream = Annotated[
OpenAIResponseObjectStreamResponseCreated
| OpenAIResponseObjectStreamResponseOutputTextDelta
| OpenAIResponseObjectStreamResponseCompleted,
OpenAIResponseObjectStreamResponseCreated | OpenAIResponseObjectStreamResponseCompleted,
Field(discriminator="type"),
]
register_schema(OpenAIResponseObjectStream, name="OpenAIResponseObjectStream")
@ -230,50 +186,13 @@ class OpenAIResponseInputToolFileSearch(BaseModel):
# TODO: add filters
class ApprovalFilter(BaseModel):
always: list[str] | None = None
never: list[str] | None = None
class AllowedToolsFilter(BaseModel):
tool_names: list[str] | None = None
@json_schema_type
class OpenAIResponseInputToolMCP(BaseModel):
type: Literal["mcp"] = "mcp"
server_label: str
server_url: str
headers: dict[str, Any] | None = None
require_approval: Literal["always"] | Literal["never"] | ApprovalFilter = "never"
allowed_tools: list[str] | AllowedToolsFilter | None = None
OpenAIResponseInputTool = Annotated[
OpenAIResponseInputToolWebSearch
| OpenAIResponseInputToolFileSearch
| OpenAIResponseInputToolFunction
| OpenAIResponseInputToolMCP,
OpenAIResponseInputToolWebSearch | OpenAIResponseInputToolFileSearch | OpenAIResponseInputToolFunction,
Field(discriminator="type"),
]
register_schema(OpenAIResponseInputTool, name="OpenAIResponseInputTool")
class ListOpenAIResponseInputItem(BaseModel):
class OpenAIResponseInputItemList(BaseModel):
data: list[OpenAIResponseInput]
object: Literal["list"] = "list"
@json_schema_type
class OpenAIResponseObjectWithInput(OpenAIResponseObject):
input: list[OpenAIResponseInput]
@json_schema_type
class ListOpenAIResponseObject(BaseModel):
data: list[OpenAIResponseObjectWithInput]
has_more: bool
first_id: str
last_id: str
object: Literal["list"] = "list"

View file

@ -0,0 +1,30 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any
from pydantic import BaseModel
from llama_stack.apis.common.content_types import URL
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class RestAPIMethod(Enum):
GET = "GET"
POST = "POST"
PUT = "PUT"
DELETE = "DELETE"
@json_schema_type
class RestAPIExecutionConfig(BaseModel):
url: URL
method: RestAPIMethod
params: dict[str, Any] | None = None
headers: dict[str, Any] | None = None
body: dict[str, Any] | None = None

View file

@ -4,7 +4,6 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any
from pydantic import BaseModel
@ -12,11 +11,6 @@ from pydantic import BaseModel
from llama_stack.schema_utils import json_schema_type
class Order(Enum):
asc = "asc"
desc = "desc"
@json_schema_type
class PaginatedResponse(BaseModel):
"""A generic paginated response that follows a simple format.

View file

@ -19,7 +19,6 @@ from pydantic import BaseModel, Field, field_validator
from typing_extensions import TypedDict
from llama_stack.apis.common.content_types import ContentDelta, InterleavedContent, InterleavedContentItem
from llama_stack.apis.common.responses import Order
from llama_stack.apis.models import Model
from llama_stack.apis.telemetry.telemetry import MetricResponseMixin
from llama_stack.models.llama.datatypes import (
@ -783,48 +782,6 @@ class OpenAICompletion(BaseModel):
object: Literal["text_completion"] = "text_completion"
@json_schema_type
class OpenAIEmbeddingData(BaseModel):
"""A single embedding data object from an OpenAI-compatible embeddings response.
:param object: The object type, which will be "embedding"
:param embedding: The embedding vector as a list of floats (when encoding_format="float") or as a base64-encoded string (when encoding_format="base64")
:param index: The index of the embedding in the input list
"""
object: Literal["embedding"] = "embedding"
embedding: list[float] | str
index: int
@json_schema_type
class OpenAIEmbeddingUsage(BaseModel):
"""Usage information for an OpenAI-compatible embeddings response.
:param prompt_tokens: The number of tokens in the input
:param total_tokens: The total number of tokens used
"""
prompt_tokens: int
total_tokens: int
@json_schema_type
class OpenAIEmbeddingsResponse(BaseModel):
"""Response from an OpenAI-compatible embeddings request.
:param object: The object type, which will be "list"
:param data: List of embedding data objects
:param model: The model that was used to generate the embeddings
:param usage: Usage information
"""
object: Literal["list"] = "list"
data: list[OpenAIEmbeddingData]
model: str
usage: OpenAIEmbeddingUsage
class ModelStore(Protocol):
async def get_model(self, identifier: str) -> Model: ...
@ -863,27 +820,15 @@ class BatchChatCompletionResponse(BaseModel):
batch: list[ChatCompletionResponse]
class OpenAICompletionWithInputMessages(OpenAIChatCompletion):
input_messages: list[OpenAIMessageParam]
@json_schema_type
class ListOpenAIChatCompletionResponse(BaseModel):
data: list[OpenAICompletionWithInputMessages]
has_more: bool
first_id: str
last_id: str
object: Literal["list"] = "list"
@runtime_checkable
@trace_protocol
class InferenceProvider(Protocol):
"""
This protocol defines the interface that should be implemented by all inference providers.
"""
class Inference(Protocol):
"""Llama Stack Inference API for generating completions, chat completions, and embeddings.
API_NAMESPACE: str = "Inference"
This API provides the raw interface to the underlying models. Two kinds of models are supported:
- LLM models: these models generate "raw" and "chat" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic search.
"""
model_store: ModelStore | None = None
@ -1117,59 +1062,3 @@ class InferenceProvider(Protocol):
:returns: An OpenAIChatCompletion.
"""
...
@webmethod(route="/openai/v1/embeddings", method="POST")
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
"""Generate OpenAI-compatible embeddings for the given input using the specified model.
:param model: The identifier of the model to use. The model must be an embedding model registered with Llama Stack and available via the /models endpoint.
:param input: Input text to embed, encoded as a string or array of strings. To embed multiple inputs in a single request, pass an array of strings.
:param encoding_format: (Optional) The format to return the embeddings in. Can be either "float" or "base64". Defaults to "float".
:param dimensions: (Optional) The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
:param user: (Optional) A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
:returns: An OpenAIEmbeddingsResponse containing the embeddings.
"""
...
class Inference(InferenceProvider):
"""Llama Stack Inference API for generating completions, chat completions, and embeddings.
This API provides the raw interface to the underlying models. Two kinds of models are supported:
- LLM models: these models generate "raw" and "chat" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic search.
"""
@webmethod(route="/openai/v1/chat/completions", method="GET")
async def list_chat_completions(
self,
after: str | None = None,
limit: int | None = 20,
model: str | None = None,
order: Order | None = Order.desc,
) -> ListOpenAIChatCompletionResponse:
"""List all chat completions.
:param after: The ID of the last chat completion to return.
:param limit: The maximum number of chat completions to return.
:param model: The model to filter by.
:param order: The order to sort the chat completions by: "asc" or "desc". Defaults to "desc".
:returns: A ListOpenAIChatCompletionResponse.
"""
raise NotImplementedError("List chat completions is not implemented")
@webmethod(route="/openai/v1/chat/completions/{completion_id}", method="GET")
async def get_chat_completion(self, completion_id: str) -> OpenAICompletionWithInputMessages:
"""Describe a chat completion by its ID.
:param completion_id: ID of the chat completion.
:returns: A OpenAICompletionWithInputMessages.
"""
raise NotImplementedError("Get chat completion is not implemented")

View file

@ -76,7 +76,6 @@ class RAGQueryConfig(BaseModel):
:param chunk_template: Template for formatting each retrieved chunk in the context.
Available placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk content string), {metadata} (chunk metadata dict).
Default: "Result {index}\\nContent: {chunk.content}\\nMetadata: {metadata}\\n"
:param mode: Search mode for retrievaleither "vector" or "keyword". Default "vector".
"""
# This config defines how a query is generated using the messages
@ -85,7 +84,6 @@ class RAGQueryConfig(BaseModel):
max_tokens_in_context: int = 4096
max_chunks: int = 5
chunk_template: str = "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n"
mode: str | None = None
@field_validator("chunk_template")
def validate_chunk_template(cls, v: str) -> str:

View file

@ -27,10 +27,18 @@ class ToolParameter(BaseModel):
default: Any | None = None
@json_schema_type
class ToolHost(Enum):
distribution = "distribution"
client = "client"
model_context_protocol = "model_context_protocol"
@json_schema_type
class Tool(Resource):
type: Literal[ResourceType.tool] = ResourceType.tool
toolgroup_id: str
tool_host: ToolHost
description: str
parameters: list[ToolParameter]
metadata: dict[str, Any] | None = None
@ -68,8 +76,8 @@ class ToolInvocationResult(BaseModel):
class ToolStore(Protocol):
async def get_tool(self, tool_name: str) -> Tool: ...
async def get_tool_group(self, toolgroup_id: str) -> ToolGroup: ...
def get_tool(self, tool_name: str) -> Tool: ...
def get_tool_group(self, toolgroup_id: str) -> ToolGroup: ...
class ListToolGroupsResponse(BaseModel):

View file

@ -19,16 +19,8 @@ from llama_stack.schema_utils import json_schema_type, webmethod
class Chunk(BaseModel):
"""
A chunk of content that can be inserted into a vector database.
:param content: The content of the chunk, which can be interleaved text, images, or other types.
:param embedding: Optional embedding for the chunk. If not provided, it will be computed later.
:param metadata: Metadata associated with the chunk, such as document ID, source, or other relevant information.
"""
content: InterleavedContent
metadata: dict[str, Any] = Field(default_factory=dict)
embedding: list[float] | None = None
@json_schema_type
@ -58,10 +50,7 @@ class VectorIO(Protocol):
"""Insert chunks into a vector database.
:param vector_db_id: The identifier of the vector database to insert the chunks into.
:param chunks: The chunks to insert. Each `Chunk` should contain content which can be interleaved text, images, or other types.
`metadata`: `dict[str, Any]` and `embedding`: `List[float]` are optional.
If `metadata` is provided, you configure how Llama Stack formats the chunk during generation.
If `embedding` is not provided, it will be computed later.
:param chunks: The chunks to insert.
:param ttl_seconds: The time to live of the chunks.
"""
...

View file

@ -9,7 +9,6 @@ import asyncio
import json
import os
import shutil
import sys
from dataclasses import dataclass
from datetime import datetime, timezone
from functools import partial
@ -378,15 +377,14 @@ def _meta_download(
downloader = ParallelDownloader(max_concurrent_downloads=max_concurrent_downloads)
asyncio.run(downloader.download_all(tasks))
cprint(f"\nSuccessfully downloaded model to {output_dir}", color="green", file=sys.stderr)
cprint(f"\nSuccessfully downloaded model to {output_dir}", "green")
cprint(
f"\nView MD5 checksum files at: {output_dir / 'checklist.chk'}",
file=sys.stderr,
"white",
)
cprint(
f"\n[Optionally] To run MD5 checksums, use the following command: llama model verify-download --model-id {model_id}",
color="yellow",
file=sys.stderr,
"yellow",
)

View file

@ -12,7 +12,6 @@ import shutil
import sys
import textwrap
from functools import lru_cache
from importlib.abc import Traversable
from pathlib import Path
import yaml
@ -79,7 +78,6 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
cprint(
f"Could not find template {args.template}. Please run `llama stack build --list-templates` to check out the available templates",
color="red",
file=sys.stderr,
)
sys.exit(1)
build_config = available_templates[args.template]
@ -89,7 +87,6 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
cprint(
f"Please specify a image-type ({' | '.join(e.value for e in ImageType)}) for {args.template}",
color="red",
file=sys.stderr,
)
sys.exit(1)
elif args.providers:
@ -99,7 +96,6 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
cprint(
"Could not parse `--providers`. Please ensure the list is in the format api1=provider1,api2=provider2",
color="red",
file=sys.stderr,
)
sys.exit(1)
api, provider = api_provider.split("=")
@ -108,7 +104,6 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
cprint(
f"{api} is not a valid API.",
color="red",
file=sys.stderr,
)
sys.exit(1)
if provider in providers_for_api:
@ -117,7 +112,6 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
cprint(
f"{provider} is not a valid provider for the {api} API.",
color="red",
file=sys.stderr,
)
sys.exit(1)
distribution_spec = DistributionSpec(
@ -128,7 +122,6 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
cprint(
f"Please specify a image-type (container | conda | venv) for {args.template}",
color="red",
file=sys.stderr,
)
sys.exit(1)
@ -157,14 +150,12 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
cprint(
f"No current conda environment detected or specified, will create a new conda environment with the name `llamastack-{name}`",
color="yellow",
file=sys.stderr,
)
image_name = f"llamastack-{name}"
else:
cprint(
f"Using conda environment {image_name}",
color="green",
file=sys.stderr,
)
else:
image_name = f"llamastack-{name}"
@ -177,10 +168,9 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
""",
),
color="green",
file=sys.stderr,
)
cprint("Tip: use <TAB> to see options for the providers.\n", color="green", file=sys.stderr)
print("Tip: use <TAB> to see options for the providers.\n")
providers = dict()
for api, providers_for_api in get_provider_registry().items():
@ -216,13 +206,10 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
contents = yaml.safe_load(f)
contents = replace_env_vars(contents)
build_config = BuildConfig(**contents)
if args.image_type:
build_config.image_type = args.image_type
except Exception as e:
cprint(
f"Could not parse config file {args.config}: {e}",
color="red",
file=sys.stderr,
)
sys.exit(1)
@ -249,27 +236,25 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
cprint(
f"Error building stack: {exc}",
color="red",
file=sys.stderr,
)
cprint("Stack trace:", color="red", file=sys.stderr)
cprint("Stack trace:", color="red")
traceback.print_exc()
sys.exit(1)
if run_config is None:
cprint(
"Run config path is empty",
color="red",
file=sys.stderr,
)
sys.exit(1)
if args.run:
run_config = Path(run_config)
config_dict = yaml.safe_load(run_config.read_text())
config = parse_and_maybe_upgrade_config(config_dict)
if config.external_providers_dir and not config.external_providers_dir.exists():
config.external_providers_dir.mkdir(exist_ok=True)
if not os.path.exists(str(config.external_providers_dir)):
os.makedirs(str(config.external_providers_dir), exist_ok=True)
run_args = formulate_run_args(args.image_type, args.image_name, config, args.template)
run_args.extend([str(os.getenv("LLAMA_STACK_PORT", 8321)), "--config", run_config])
run_args.extend([run_config, str(os.getenv("LLAMA_STACK_PORT", 8321))])
run_command(run_args)
@ -277,7 +262,7 @@ def _generate_run_config(
build_config: BuildConfig,
build_dir: Path,
image_name: str,
) -> Path:
) -> str:
"""
Generate a run.yaml template file for user to edit from a build.yaml file
"""
@ -317,7 +302,6 @@ def _generate_run_config(
cprint(
f"Failed to import provider {provider_type} for API {api} - assuming it's external, skipping",
color="yellow",
file=sys.stderr,
)
# Set config_type to None to avoid UnboundLocalError
config_type = None
@ -345,7 +329,10 @@ def _generate_run_config(
# For non-container builds, the run.yaml is generated at the very end of the build process so it
# makes sense to display this message
if build_config.image_type != LlamaStackImageType.CONTAINER.value:
cprint(f"You can now run your stack with `llama stack run {run_config_file}`", color="green", file=sys.stderr)
cprint(
f"You can now run your stack with `llama stack run {run_config_file}`",
color="green",
)
return run_config_file
@ -354,7 +341,7 @@ def _run_stack_build_command_from_build_config(
image_name: str | None = None,
template_name: str | None = None,
config_path: str | None = None,
) -> Path | Traversable:
) -> str:
image_name = image_name or build_config.image_name
if build_config.image_type == LlamaStackImageType.CONTAINER.value:
if template_name:
@ -383,7 +370,7 @@ def _run_stack_build_command_from_build_config(
# Generate the run.yaml so it can be included in the container image with the proper entrypoint
# Only do this if we're building a container image and we're not using a template
if build_config.image_type == LlamaStackImageType.CONTAINER.value and not template_name and config_path:
cprint("Generating run.yaml file", color="yellow", file=sys.stderr)
cprint("Generating run.yaml file", color="green")
run_config_file = _generate_run_config(build_config, build_dir, image_name)
with open(build_file_path, "w") as f:
@ -407,13 +394,11 @@ def _run_stack_build_command_from_build_config(
run_config_file = build_dir / f"{template_name}-run.yaml"
shutil.copy(path, run_config_file)
cprint("Build Successful!", color="green", file=sys.stderr)
cprint(f"You can find the newly-built template here: {template_path}", color="light_blue", file=sys.stderr)
cprint("Build Successful!", color="green")
cprint("You can find the newly-built template here: " + colored(template_path, "light_blue"))
cprint(
"You can run the new Llama Stack distro via: "
+ colored(f"llama stack run {template_path} --image-type {build_config.image_type}", "light_blue"),
color="green",
file=sys.stderr,
+ colored(f"llama stack run {template_path} --image-type {build_config.image_type}", "light_blue")
)
return template_path
else:

View file

@ -49,7 +49,7 @@ class StackBuild(Subcommand):
type=str,
help="Image Type to use for the build. If not specified, will use the image type from the template config.",
choices=[e.value for e in ImageType],
default=None, # no default so we can detect if a user specified --image-type and override image_type in the config
default=ImageType.CONDA.value,
)
self.parser.add_argument(

View file

@ -1,56 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
from pathlib import Path
from llama_stack.cli.subcommand import Subcommand
from llama_stack.cli.table import print_table
class StackListBuilds(Subcommand):
"""List built stacks in .llama/distributions directory"""
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"list",
prog="llama stack list",
description="list the build stacks",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
self._add_arguments()
self.parser.set_defaults(func=self._list_stack_command)
def _get_distribution_dirs(self) -> dict[str, Path]:
"""Return a dictionary of distribution names and their paths"""
distributions = {}
dist_dir = Path.home() / ".llama" / "distributions"
if dist_dir.exists():
for stack_dir in dist_dir.iterdir():
if stack_dir.is_dir():
distributions[stack_dir.name] = stack_dir
return distributions
def _list_stack_command(self, args: argparse.Namespace) -> None:
distributions = self._get_distribution_dirs()
if not distributions:
print("No stacks found in ~/.llama/distributions")
return
headers = ["Stack Name", "Path"]
headers.extend(["Build Config", "Run Config"])
rows = []
for name, path in distributions.items():
row = [name, str(path)]
# Check for build and run config files
build_config = "Yes" if (path / f"{name}-build.yaml").exists() else "No"
run_config = "Yes" if (path / f"{name}-run.yaml").exists() else "No"
row.extend([build_config, run_config])
rows.append(row)
print_table(rows, headers, separate_rows=True)

View file

@ -1,115 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import shutil
import sys
from pathlib import Path
from termcolor import cprint
from llama_stack.cli.subcommand import Subcommand
from llama_stack.cli.table import print_table
class StackRemove(Subcommand):
"""Remove the build stack"""
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"rm",
prog="llama stack rm",
description="Remove the build stack",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
self._add_arguments()
self.parser.set_defaults(func=self._remove_stack_build_command)
def _add_arguments(self) -> None:
self.parser.add_argument(
"name",
type=str,
nargs="?",
help="Name of the stack to delete",
)
self.parser.add_argument(
"--all",
"-a",
action="store_true",
help="Delete all stacks (use with caution)",
)
def _get_distribution_dirs(self) -> dict[str, Path]:
"""Return a dictionary of distribution names and their paths"""
distributions = {}
dist_dir = Path.home() / ".llama" / "distributions"
if dist_dir.exists():
for stack_dir in dist_dir.iterdir():
if stack_dir.is_dir():
distributions[stack_dir.name] = stack_dir
return distributions
def _list_stacks(self) -> None:
"""Display available stacks in a table"""
distributions = self._get_distribution_dirs()
if not distributions:
cprint("No stacks found in ~/.llama/distributions", color="red", file=sys.stderr)
sys.exit(1)
headers = ["Stack Name", "Path"]
rows = [[name, str(path)] for name, path in distributions.items()]
print_table(rows, headers, separate_rows=True)
def _remove_stack_build_command(self, args: argparse.Namespace) -> None:
distributions = self._get_distribution_dirs()
if args.all:
confirm = input("Are you sure you want to delete ALL stacks? [yes-i-really-want/N] ").lower()
if confirm != "yes-i-really-want":
cprint("Deletion cancelled.", color="green", file=sys.stderr)
return
for name, path in distributions.items():
try:
shutil.rmtree(path)
cprint(f"Deleted stack: {name}", color="green", file=sys.stderr)
except Exception as e:
cprint(
f"Failed to delete stack {name}: {e}",
color="red",
file=sys.stderr,
)
sys.exit(1)
if not args.name:
self._list_stacks()
if not args.name:
return
if args.name not in distributions:
self._list_stacks()
cprint(
f"Stack not found: {args.name}",
color="red",
file=sys.stderr,
)
sys.exit(1)
stack_path = distributions[args.name]
confirm = input(f"Are you sure you want to delete stack '{args.name}'? [y/N] ").lower()
if confirm != "y":
cprint("Deletion cancelled.", color="green", file=sys.stderr)
return
try:
shutil.rmtree(stack_path)
cprint(f"Successfully deleted stack: {args.name}", color="green", file=sys.stderr)
except Exception as e:
cprint(f"Failed to delete stack {args.name}: {e}", color="red", file=sys.stderr)
sys.exit(1)

View file

@ -6,7 +6,6 @@
import argparse
import os
import subprocess
from pathlib import Path
from llama_stack.cli.stack.utils import ImageType
@ -61,11 +60,6 @@ class StackRun(Subcommand):
help="Image Type used during the build. This can be either conda or container or venv.",
choices=[e.value for e in ImageType],
)
self.parser.add_argument(
"--enable-ui",
action="store_true",
help="Start the UI server",
)
# If neither image type nor image name is provided, but at the same time
# the current environment has conda breadcrumbs, then assume what the user
@ -89,8 +83,6 @@ class StackRun(Subcommand):
from llama_stack.distribution.utils.config_dirs import DISTRIBS_BASE_DIR
from llama_stack.distribution.utils.exec import formulate_run_args, run_command
if args.enable_ui:
self._start_ui_development_server(args.port)
image_type, image_name = self._get_image_type_and_name(args)
# Check if config is required based on image type
@ -178,44 +170,3 @@ class StackRun(Subcommand):
run_args.extend(["--env", f"{key}={value}"])
run_command(run_args)
def _start_ui_development_server(self, stack_server_port: int):
logger.info("Attempting to start UI development server...")
# Check if npm is available
npm_check = subprocess.run(["npm", "--version"], capture_output=True, text=True, check=False)
if npm_check.returncode != 0:
logger.warning(
f"'npm' command not found or not executable. UI development server will not be started. Error: {npm_check.stderr}"
)
return
ui_dir = REPO_ROOT / "llama_stack" / "ui"
logs_dir = Path("~/.llama/ui/logs").expanduser()
try:
# Create logs directory if it doesn't exist
logs_dir.mkdir(parents=True, exist_ok=True)
ui_stdout_log_path = logs_dir / "stdout.log"
ui_stderr_log_path = logs_dir / "stderr.log"
# Open log files in append mode
stdout_log_file = open(ui_stdout_log_path, "a")
stderr_log_file = open(ui_stderr_log_path, "a")
process = subprocess.Popen(
["npm", "run", "dev"],
cwd=str(ui_dir),
stdout=stdout_log_file,
stderr=stderr_log_file,
env={**os.environ, "NEXT_PUBLIC_LLAMA_STACK_BASE_URL": f"http://localhost:{stack_server_port}"},
)
logger.info(f"UI development server process started in {ui_dir} with PID {process.pid}.")
logger.info(f"Logs: stdout -> {ui_stdout_log_path}, stderr -> {ui_stderr_log_path}")
logger.info(f"UI will be available at http://localhost:{os.getenv('LLAMA_STACK_UI_PORT', 8322)}")
except FileNotFoundError:
logger.error(
"Failed to start UI development server: 'npm' command not found. Make sure npm is installed and in your PATH."
)
except Exception as e:
logger.error(f"Failed to start UI development server in {ui_dir}: {e}")

View file

@ -7,14 +7,12 @@
import argparse
from importlib.metadata import version
from llama_stack.cli.stack.list_stacks import StackListBuilds
from llama_stack.cli.stack.utils import print_subcommand_description
from llama_stack.cli.subcommand import Subcommand
from .build import StackBuild
from .list_apis import StackListApis
from .list_providers import StackListProviders
from .remove import StackRemove
from .run import StackRun
@ -43,6 +41,5 @@ class StackParser(Subcommand):
StackListApis.create(subparsers)
StackListProviders.create(subparsers)
StackRun.create(subparsers)
StackRemove.create(subparsers)
StackListBuilds.create(subparsers)
print_subcommand_description(self.parser, subparsers)

View file

@ -6,7 +6,6 @@
import importlib.resources
import logging
import sys
from pathlib import Path
from pydantic import BaseModel
@ -44,20 +43,8 @@ def get_provider_dependencies(
# Extract providers based on config type
if isinstance(config, DistributionTemplate):
providers = config.providers
# TODO: This is a hack to get the dependencies for internal APIs into build
# We should have a better way to do this by formalizing the concept of "internal" APIs
# and providers, with a way to specify dependencies for them.
run_configs = config.run_configs
additional_pip_packages: list[str] = []
if run_configs:
for run_config in run_configs.values():
run_config_ = run_config.run_config(name="", providers={}, container_image=None)
if run_config_.inference_store:
additional_pip_packages.extend(run_config_.inference_store.pip_packages)
elif isinstance(config, BuildConfig):
providers = config.distribution_spec.providers
additional_pip_packages = config.additional_pip_packages
deps = []
registry = get_provider_registry(config)
for api_str, provider_or_providers in providers.items():
@ -85,9 +72,6 @@ def get_provider_dependencies(
else:
normal_deps.append(package)
if additional_pip_packages:
normal_deps.extend(additional_pip_packages)
return list(set(normal_deps)), list(set(special_deps))
@ -96,11 +80,10 @@ def print_pip_install_help(config: BuildConfig):
cprint(
f"Please install needed dependencies using the following commands:\n\nuv pip install {' '.join(normal_deps)}",
color="yellow",
file=sys.stderr,
"yellow",
)
for special_dep in special_deps:
cprint(f"uv pip install {special_dep}", color="yellow", file=sys.stderr)
cprint(f"uv pip install {special_dep}", "yellow")
print()

View file

@ -6,7 +6,6 @@
import inspect
import json
import sys
from collections.abc import AsyncIterator
from enum import Enum
from typing import Any, Union, get_args, get_origin
@ -97,13 +96,13 @@ def create_api_client_class(protocol) -> type:
try:
data = json.loads(data)
if "error" in data:
cprint(data, color="red", file=sys.stderr)
cprint(data, "red")
continue
yield parse_obj_as(return_type, data)
except Exception as e:
cprint(f"Error with parsing or validation: {e}", color="red", file=sys.stderr)
cprint(data, color="red", file=sys.stderr)
print(f"Error with parsing or validation: {e}")
print(data)
def httpx_request_params(self, method_name: str, *args, **kwargs) -> dict:
webmethod, sig = self.routes[method_name]

View file

@ -25,8 +25,7 @@ from llama_stack.apis.tools import Tool, ToolGroup, ToolGroupInput, ToolRuntime
from llama_stack.apis.vector_dbs import VectorDB, VectorDBInput
from llama_stack.apis.vector_io import VectorIO
from llama_stack.providers.datatypes import Api, ProviderSpec
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.providers.utils.sqlstore.sqlstore import SqlStoreConfig
from llama_stack.providers.utils.kvstore.config import KVStoreConfig
LLAMA_STACK_BUILD_CONFIG_VERSION = "2"
LLAMA_STACK_RUN_CONFIG_VERSION = "2"
@ -221,38 +220,21 @@ class LoggingConfig(BaseModel):
class AuthProviderType(str, Enum):
"""Supported authentication provider types."""
OAUTH2_TOKEN = "oauth2_token"
KUBERNETES = "kubernetes"
CUSTOM = "custom"
class AuthenticationConfig(BaseModel):
provider_type: AuthProviderType = Field(
...,
description="Type of authentication provider",
description="Type of authentication provider (e.g., 'kubernetes', 'custom')",
)
config: dict[str, Any] = Field(
config: dict[str, str] = Field(
...,
description="Provider-specific configuration",
)
class AuthenticationRequiredError(Exception):
pass
class QuotaPeriod(str, Enum):
DAY = "day"
class QuotaConfig(BaseModel):
kvstore: SqliteKVStoreConfig = Field(description="Config for KV store backend (SQLite only for now)")
anonymous_max_requests: int = Field(default=100, description="Max requests for unauthenticated clients per period")
authenticated_max_requests: int = Field(
default=1000, description="Max requests for authenticated clients per period"
)
period: QuotaPeriod = Field(default=QuotaPeriod.DAY, description="Quota period to set")
class ServerConfig(BaseModel):
port: int = Field(
default=8321,
@ -280,10 +262,6 @@ class ServerConfig(BaseModel):
default=None,
description="The host the server should listen on",
)
quota: QuotaConfig | None = Field(
default=None,
description="Per client quota request configuration",
)
class StackRunConfig(BaseModel):
@ -319,13 +297,6 @@ Configuration for the persistence store used by the distribution registry. If no
a default SQLite store will be used.""",
)
inference_store: SqlStoreConfig | None = Field(
default=None,
description="""
Configuration for the persistence store used by the inference API. If not specified,
a default SQLite store will be used.""",
)
# registry of "resources" in the distribution
models: list[ModelInput] = Field(default_factory=list)
shields: list[ShieldInput] = Field(default_factory=list)
@ -369,21 +340,8 @@ class BuildConfig(BaseModel):
default=None,
description="Name of the distribution to build",
)
external_providers_dir: Path | None = Field(
external_providers_dir: str | None = Field(
default=None,
description="Path to directory containing external provider implementations. The providers packages will be resolved from this directory. "
"pip_packages MUST contain the provider package name.",
)
additional_pip_packages: list[str] = Field(
default_factory=list,
description="Additional pip packages to install in the distribution. These packages will be installed in the distribution environment.",
)
@field_validator("external_providers_dir")
@classmethod
def validate_external_providers_dir(cls, v):
if v is None:
return None
if isinstance(v, str):
return Path(v)
return v

View file

@ -16,7 +16,7 @@ from llama_stack.apis.inspect import (
VersionInfo,
)
from llama_stack.distribution.datatypes import StackRunConfig
from llama_stack.distribution.server.routes import get_all_api_routes
from llama_stack.distribution.server.endpoints import get_all_api_endpoints
from llama_stack.providers.datatypes import HealthStatus
@ -31,7 +31,7 @@ async def get_provider_impl(config, deps):
class DistributionInspectImpl(Inspect):
def __init__(self, config: DistributionInspectConfig, deps):
def __init__(self, config, deps):
self.config = config
self.deps = deps
@ -39,36 +39,22 @@ class DistributionInspectImpl(Inspect):
pass
async def list_routes(self) -> ListRoutesResponse:
run_config: StackRunConfig = self.config.run_config
run_config = self.config.run_config
ret = []
all_endpoints = get_all_api_routes()
all_endpoints = get_all_api_endpoints()
for api, endpoints in all_endpoints.items():
# Always include provider and inspect APIs, filter others based on run config
if api.value in ["providers", "inspect"]:
ret.extend(
[
RouteInfo(
route=e.path,
method=next(iter([m for m in e.methods if m != "HEAD"])),
provider_types=[], # These APIs don't have "real" providers - they're internal to the stack
)
for e in endpoints
]
)
else:
providers = run_config.providers.get(api.value, [])
if providers: # Only process if there are providers for this API
ret.extend(
[
RouteInfo(
route=e.path,
method=next(iter([m for m in e.methods if m != "HEAD"])),
provider_types=[p.provider_type for p in providers],
)
for e in endpoints
]
providers = run_config.providers.get(api.value, [])
ret.extend(
[
RouteInfo(
route=e.route,
method=e.method,
provider_types=[p.provider_type for p in providers],
)
for e in endpoints
]
)
return ListRoutesResponse(data=ret)

View file

@ -9,7 +9,6 @@ import inspect
import json
import logging
import os
import sys
from concurrent.futures import ThreadPoolExecutor
from enum import Enum
from pathlib import Path
@ -37,7 +36,10 @@ from llama_stack.distribution.request_headers import (
request_provider_data_context,
)
from llama_stack.distribution.resolver import ProviderRegistry
from llama_stack.distribution.server.routes import find_matching_route, initialize_route_impls
from llama_stack.distribution.server.endpoints import (
find_matching_endpoint,
initialize_endpoint_impls,
)
from llama_stack.distribution.stack import (
construct_stack,
get_stack_run_config_from_template,
@ -205,14 +207,13 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
async def initialize(self) -> bool:
try:
self.route_impls = None
self.endpoint_impls = None
self.impls = await construct_stack(self.config, self.custom_provider_registry)
except ModuleNotFoundError as _e:
cprint(_e.msg, color="red", file=sys.stderr)
cprint(_e.msg, "red")
cprint(
"Using llama-stack as a library requires installing dependencies depending on the template (providers) you choose.\n",
color="yellow",
file=sys.stderr,
"yellow",
)
if self.config_path_or_template_name.endswith(".yaml"):
# Convert Provider objects to their types
@ -225,7 +226,6 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
distribution_spec=DistributionSpec(
providers=provider_types,
),
external_providers_dir=self.config.external_providers_dir,
)
print_pip_install_help(build_config)
else:
@ -233,13 +233,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
cprint(
f"Please run:\n\n{prefix}llama stack build --template {self.config_path_or_template_name} --image-type venv\n\n",
"yellow",
file=sys.stderr,
)
cprint(
"Please check your internet connection and try again.",
"red",
file=sys.stderr,
)
raise _e
if Api.telemetry in self.impls:
@ -251,7 +245,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
safe_config = redact_sensitive_fields(self.config.model_dump())
console.print(yaml.dump(safe_config, indent=2))
self.route_impls = initialize_route_impls(self.impls)
self.endpoint_impls = initialize_endpoint_impls(self.impls)
return True
async def request(
@ -262,15 +256,13 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
stream=False,
stream_cls=None,
):
if not self.route_impls:
if not self.endpoint_impls:
raise ValueError("Client not initialized")
# Create headers with provider data if available
headers = options.headers or {}
headers = {}
if self.provider_data:
keys = ["X-LlamaStack-Provider-Data", "x-llamastack-provider-data"]
if all(key not in headers for key in keys):
headers["X-LlamaStack-Provider-Data"] = json.dumps(self.provider_data)
headers["X-LlamaStack-Provider-Data"] = json.dumps(self.provider_data)
# Use context manager for provider data
with request_provider_data_context(headers):
@ -293,14 +285,11 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
cast_to: Any,
options: Any,
):
if self.route_impls is None:
raise ValueError("Client not initialized")
path = options.url
body = options.params or {}
body |= options.json_data or {}
matched_func, path_params, route = find_matching_route(options.method, path, self.route_impls)
matched_func, path_params, route = find_matching_endpoint(options.method, path, self.endpoint_impls)
body |= path_params
body = self._convert_body(path, options.method, body)
await start_trace(route, {"__location__": "library_client"})
@ -342,13 +331,10 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
options: Any,
stream_cls: Any,
):
if self.route_impls is None:
raise ValueError("Client not initialized")
path = options.url
body = options.params or {}
body |= options.json_data or {}
func, path_params, route = find_matching_route(options.method, path, self.route_impls)
func, path_params, route = find_matching_endpoint(options.method, path, self.endpoint_impls)
body |= path_params
body = self._convert_body(path, options.method, body)
@ -400,10 +386,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
if not body:
return {}
if self.route_impls is None:
raise ValueError("Client not initialized")
func, _, _ = find_matching_route(method, path, self.route_impls)
func, _, _ = find_matching_endpoint(method, path, self.endpoint_impls)
sig = inspect.signature(func)
# Strip NOT_GIVENs to use the defaults in signature

View file

@ -13,7 +13,7 @@ from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.eval import Eval
from llama_stack.apis.files import Files
from llama_stack.apis.inference import Inference, InferenceProvider
from llama_stack.apis.inference import Inference
from llama_stack.apis.inspect import Inspect
from llama_stack.apis.models import Models
from llama_stack.apis.post_training import PostTraining
@ -47,7 +47,7 @@ from llama_stack.providers.datatypes import (
RemoteProviderSpec,
ScoringFunctionsProtocolPrivate,
ShieldsProtocolPrivate,
ToolGroupsProtocolPrivate,
ToolsProtocolPrivate,
VectorDBsProtocolPrivate,
)
@ -83,17 +83,10 @@ def api_protocol_map() -> dict[Api, Any]:
}
def api_protocol_map_for_compliance_check() -> dict[Api, Any]:
return {
**api_protocol_map(),
Api.inference: InferenceProvider,
}
def additional_protocols_map() -> dict[Api, Any]:
return {
Api.inference: (ModelsProtocolPrivate, Models, Api.models),
Api.tool_groups: (ToolGroupsProtocolPrivate, ToolGroups, Api.tool_groups),
Api.tool_groups: (ToolsProtocolPrivate, ToolGroups, Api.tool_groups),
Api.vector_io: (VectorDBsProtocolPrivate, VectorDBs, Api.vector_dbs),
Api.safety: (ShieldsProtocolPrivate, Shields, Api.shields),
Api.datasetio: (DatasetsProtocolPrivate, Datasets, Api.datasets),
@ -140,7 +133,7 @@ async def resolve_impls(
sorted_providers = sort_providers_by_deps(providers_with_specs, run_config)
return await instantiate_providers(sorted_providers, router_apis, dist_registry, run_config)
return await instantiate_providers(sorted_providers, router_apis, dist_registry)
def specs_for_autorouted_apis(apis_to_serve: list[str] | set[str]) -> dict[str, dict[str, ProviderWithSpec]]:
@ -243,10 +236,7 @@ def sort_providers_by_deps(
async def instantiate_providers(
sorted_providers: list[tuple[str, ProviderWithSpec]],
router_apis: set[Api],
dist_registry: DistributionRegistry,
run_config: StackRunConfig,
sorted_providers: list[tuple[str, ProviderWithSpec]], router_apis: set[Api], dist_registry: DistributionRegistry
) -> dict:
"""Instantiates providers asynchronously while managing dependencies."""
impls: dict[Api, Any] = {}
@ -261,7 +251,7 @@ async def instantiate_providers(
if isinstance(provider.spec, RoutingTableProviderSpec):
inner_impls = inner_impls_by_provider_id[f"inner-{provider.spec.router_api.value}"]
impl = await instantiate_provider(provider, deps, inner_impls, dist_registry, run_config)
impl = await instantiate_provider(provider, deps, inner_impls, dist_registry)
if api_str.startswith("inner-"):
inner_impls_by_provider_id[api_str][provider.provider_id] = impl
@ -311,8 +301,10 @@ async def instantiate_provider(
deps: dict[Api, Any],
inner_impls: dict[str, Any],
dist_registry: DistributionRegistry,
run_config: StackRunConfig,
):
protocols = api_protocol_map()
additional_protocols = additional_protocols_map()
provider_spec = provider.spec
if not hasattr(provider_spec, "module"):
raise AttributeError(f"ProviderSpec of type {type(provider_spec)} does not have a 'module' attribute")
@ -331,7 +323,7 @@ async def instantiate_provider(
method = "get_auto_router_impl"
config = None
args = [provider_spec.api, deps[provider_spec.routing_table_api], deps, run_config]
args = [provider_spec.api, deps[provider_spec.routing_table_api], deps]
elif isinstance(provider_spec, RoutingTableProviderSpec):
method = "get_routing_table_impl"
@ -350,8 +342,6 @@ async def instantiate_provider(
impl.__provider_spec__ = provider_spec
impl.__provider_config__ = config
protocols = api_protocol_map_for_compliance_check()
additional_protocols = additional_protocols_map()
# TODO: check compliance for special tool groups
# the impl should be for Api.tool_runtime, the name should be the special tool group, the protocol should be the special tool group protocol
check_protocol_compliance(impl, protocols[provider_spec.api])

View file

@ -7,10 +7,18 @@
from typing import Any
from llama_stack.distribution.datatypes import RoutedProtocol
from llama_stack.distribution.stack import StackRunConfig
from llama_stack.distribution.store import DistributionRegistry
from llama_stack.providers.datatypes import Api, RoutingTable
from llama_stack.providers.utils.inference.inference_store import InferenceStore
from .routing_tables import (
BenchmarksRoutingTable,
DatasetsRoutingTable,
ModelsRoutingTable,
ScoringFunctionsRoutingTable,
ShieldsRoutingTable,
ToolGroupsRoutingTable,
VectorDBsRoutingTable,
)
async def get_routing_table_impl(
@ -19,14 +27,6 @@ async def get_routing_table_impl(
_deps,
dist_registry: DistributionRegistry,
) -> Any:
from ..routing_tables.benchmarks import BenchmarksRoutingTable
from ..routing_tables.datasets import DatasetsRoutingTable
from ..routing_tables.models import ModelsRoutingTable
from ..routing_tables.scoring_functions import ScoringFunctionsRoutingTable
from ..routing_tables.shields import ShieldsRoutingTable
from ..routing_tables.toolgroups import ToolGroupsRoutingTable
from ..routing_tables.vector_dbs import VectorDBsRoutingTable
api_to_tables = {
"vector_dbs": VectorDBsRoutingTable,
"models": ModelsRoutingTable,
@ -45,15 +45,16 @@ async def get_routing_table_impl(
return impl
async def get_auto_router_impl(
api: Api, routing_table: RoutingTable, deps: dict[str, Any], run_config: StackRunConfig
) -> Any:
from .datasets import DatasetIORouter
from .eval_scoring import EvalRouter, ScoringRouter
from .inference import InferenceRouter
from .safety import SafetyRouter
from .tool_runtime import ToolRuntimeRouter
from .vector_io import VectorIORouter
async def get_auto_router_impl(api: Api, routing_table: RoutingTable, deps: dict[str, Any]) -> Any:
from .routers import (
DatasetIORouter,
EvalRouter,
InferenceRouter,
SafetyRouter,
ScoringRouter,
ToolRuntimeRouter,
VectorIORouter,
)
api_to_routers = {
"vector_io": VectorIORouter,
@ -75,12 +76,6 @@ async def get_auto_router_impl(
if dep_api in deps:
api_to_dep_impl[dep_name] = deps[dep_api]
# TODO: move pass configs to routers instead
if api == Api.inference and run_config.inference_store:
inference_store = InferenceStore(run_config.inference_store)
await inference_store.initialize()
api_to_dep_impl["store"] = inference_store
impl = api_to_routers[api.value](routing_table, **api_to_dep_impl)
await impl.initialize()
return impl

View file

@ -1,71 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import DatasetPurpose, DataSource
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import RoutingTable
logger = get_logger(name=__name__, category="core")
class DatasetIORouter(DatasetIO):
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing DatasetIORouter")
self.routing_table = routing_table
async def initialize(self) -> None:
logger.debug("DatasetIORouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("DatasetIORouter.shutdown")
pass
async def register_dataset(
self,
purpose: DatasetPurpose,
source: DataSource,
metadata: dict[str, Any] | None = None,
dataset_id: str | None = None,
) -> None:
logger.debug(
f"DatasetIORouter.register_dataset: {purpose=} {source=} {metadata=} {dataset_id=}",
)
await self.routing_table.register_dataset(
purpose=purpose,
source=source,
metadata=metadata,
dataset_id=dataset_id,
)
async def iterrows(
self,
dataset_id: str,
start_index: int | None = None,
limit: int | None = None,
) -> PaginatedResponse:
logger.debug(
f"DatasetIORouter.iterrows: {dataset_id}, {start_index=} {limit=}",
)
return await self.routing_table.get_provider_impl(dataset_id).iterrows(
dataset_id=dataset_id,
start_index=start_index,
limit=limit,
)
async def append_rows(self, dataset_id: str, rows: list[dict[str, Any]]) -> None:
logger.debug(f"DatasetIORouter.append_rows: {dataset_id}, {len(rows)} rows")
return await self.routing_table.get_provider_impl(dataset_id).append_rows(
dataset_id=dataset_id,
rows=rows,
)

View file

@ -1,148 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.eval import BenchmarkConfig, Eval, EvaluateResponse, Job
from llama_stack.apis.scoring import (
ScoreBatchResponse,
ScoreResponse,
Scoring,
ScoringFnParams,
)
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import RoutingTable
logger = get_logger(name=__name__, category="core")
class ScoringRouter(Scoring):
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing ScoringRouter")
self.routing_table = routing_table
async def initialize(self) -> None:
logger.debug("ScoringRouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("ScoringRouter.shutdown")
pass
async def score_batch(
self,
dataset_id: str,
scoring_functions: dict[str, ScoringFnParams | None] = None,
save_results_dataset: bool = False,
) -> ScoreBatchResponse:
logger.debug(f"ScoringRouter.score_batch: {dataset_id}")
res = {}
for fn_identifier in scoring_functions.keys():
score_response = await self.routing_table.get_provider_impl(fn_identifier).score_batch(
dataset_id=dataset_id,
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
)
res.update(score_response.results)
if save_results_dataset:
raise NotImplementedError("Save results dataset not implemented yet")
return ScoreBatchResponse(
results=res,
)
async def score(
self,
input_rows: list[dict[str, Any]],
scoring_functions: dict[str, ScoringFnParams | None] = None,
) -> ScoreResponse:
logger.debug(f"ScoringRouter.score: {len(input_rows)} rows, {len(scoring_functions)} functions")
res = {}
# look up and map each scoring function to its provider impl
for fn_identifier in scoring_functions.keys():
score_response = await self.routing_table.get_provider_impl(fn_identifier).score(
input_rows=input_rows,
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
)
res.update(score_response.results)
return ScoreResponse(results=res)
class EvalRouter(Eval):
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing EvalRouter")
self.routing_table = routing_table
async def initialize(self) -> None:
logger.debug("EvalRouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("EvalRouter.shutdown")
pass
async def run_eval(
self,
benchmark_id: str,
benchmark_config: BenchmarkConfig,
) -> Job:
logger.debug(f"EvalRouter.run_eval: {benchmark_id}")
return await self.routing_table.get_provider_impl(benchmark_id).run_eval(
benchmark_id=benchmark_id,
benchmark_config=benchmark_config,
)
async def evaluate_rows(
self,
benchmark_id: str,
input_rows: list[dict[str, Any]],
scoring_functions: list[str],
benchmark_config: BenchmarkConfig,
) -> EvaluateResponse:
logger.debug(f"EvalRouter.evaluate_rows: {benchmark_id}, {len(input_rows)} rows")
return await self.routing_table.get_provider_impl(benchmark_id).evaluate_rows(
benchmark_id=benchmark_id,
input_rows=input_rows,
scoring_functions=scoring_functions,
benchmark_config=benchmark_config,
)
async def job_status(
self,
benchmark_id: str,
job_id: str,
) -> Job:
logger.debug(f"EvalRouter.job_status: {benchmark_id}, {job_id}")
return await self.routing_table.get_provider_impl(benchmark_id).job_status(benchmark_id, job_id)
async def job_cancel(
self,
benchmark_id: str,
job_id: str,
) -> None:
logger.debug(f"EvalRouter.job_cancel: {benchmark_id}, {job_id}")
await self.routing_table.get_provider_impl(benchmark_id).job_cancel(
benchmark_id,
job_id,
)
async def job_result(
self,
benchmark_id: str,
job_id: str,
) -> EvaluateResponse:
logger.debug(f"EvalRouter.job_result: {benchmark_id}, {job_id}")
return await self.routing_table.get_provider_impl(benchmark_id).job_result(
benchmark_id,
job_id,
)

View file

@ -14,9 +14,14 @@ from openai.types.chat import ChatCompletionToolParam as OpenAIChatCompletionToo
from pydantic import Field, TypeAdapter
from llama_stack.apis.common.content_types import (
URL,
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import DatasetPurpose, DataSource
from llama_stack.apis.eval import BenchmarkConfig, Eval, EvaluateResponse, Job
from llama_stack.apis.inference import (
BatchChatCompletionResponse,
BatchCompletionResponse,
@ -27,11 +32,8 @@ from llama_stack.apis.inference import (
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
ListOpenAIChatCompletionResponse,
LogProbConfig,
Message,
OpenAICompletionWithInputMessages,
Order,
ResponseFormat,
SamplingParams,
StopReason,
@ -45,23 +47,93 @@ from llama_stack.apis.inference.inference import (
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAICompletion,
OpenAIEmbeddingsResponse,
OpenAIMessageParam,
OpenAIResponseFormatParam,
)
from llama_stack.apis.models import Model, ModelType
from llama_stack.apis.safety import RunShieldResponse, Safety
from llama_stack.apis.scoring import (
ScoreBatchResponse,
ScoreResponse,
Scoring,
ScoringFnParams,
)
from llama_stack.apis.shields import Shield
from llama_stack.apis.telemetry import MetricEvent, MetricInResponse, Telemetry
from llama_stack.apis.tools import (
ListToolDefsResponse,
RAGDocument,
RAGQueryConfig,
RAGQueryResult,
RAGToolRuntime,
ToolRuntime,
)
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.log import get_logger
from llama_stack.models.llama.llama3.chat_format import ChatFormat
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
from llama_stack.providers.datatypes import HealthResponse, HealthStatus, RoutingTable
from llama_stack.providers.utils.inference.inference_store import InferenceStore
from llama_stack.providers.utils.inference.stream_utils import stream_and_store_openai_completion
from llama_stack.providers.utils.telemetry.tracing import get_current_span
logger = get_logger(name=__name__, category="core")
class VectorIORouter(VectorIO):
"""Routes to an provider based on the vector db identifier"""
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing VectorIORouter")
self.routing_table = routing_table
async def initialize(self) -> None:
logger.debug("VectorIORouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("VectorIORouter.shutdown")
pass
async def register_vector_db(
self,
vector_db_id: str,
embedding_model: str,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> None:
logger.debug(f"VectorIORouter.register_vector_db: {vector_db_id}, {embedding_model}")
await self.routing_table.register_vector_db(
vector_db_id,
embedding_model,
embedding_dimension,
provider_id,
provider_vector_db_id,
)
async def insert_chunks(
self,
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
logger.debug(
f"VectorIORouter.insert_chunks: {vector_db_id}, {len(chunks)} chunks, ttl_seconds={ttl_seconds}, chunk_ids={[chunk.metadata['document_id'] for chunk in chunks[:3]]}{' and more...' if len(chunks) > 3 else ''}",
)
return await self.routing_table.get_provider_impl(vector_db_id).insert_chunks(vector_db_id, chunks, ttl_seconds)
async def query_chunks(
self,
vector_db_id: str,
query: InterleavedContent,
params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
logger.debug(f"VectorIORouter.query_chunks: {vector_db_id}")
return await self.routing_table.get_provider_impl(vector_db_id).query_chunks(vector_db_id, query, params)
class InferenceRouter(Inference):
"""Routes to an provider based on the model"""
@ -69,12 +141,10 @@ class InferenceRouter(Inference):
self,
routing_table: RoutingTable,
telemetry: Telemetry | None = None,
store: InferenceStore | None = None,
) -> None:
logger.debug("Initializing InferenceRouter")
self.routing_table = routing_table
self.telemetry = telemetry
self.store = store
if self.telemetry:
self.tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(self.tokenizer)
@ -537,59 +607,9 @@ class InferenceRouter(Inference):
provider = self.routing_table.get_provider_impl(model_obj.identifier)
if stream:
response_stream = await provider.openai_chat_completion(**params)
if self.store:
return stream_and_store_openai_completion(response_stream, model, self.store, messages)
return response_stream
return await provider.openai_chat_completion(**params)
else:
response = await self._nonstream_openai_chat_completion(provider, params)
if self.store:
await self.store.store_chat_completion(response, messages)
return response
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
logger.debug(
f"InferenceRouter.openai_embeddings: {model=}, input_type={type(input)}, {encoding_format=}, {dimensions=}",
)
model_obj = await self.routing_table.get_model(model)
if model_obj is None:
raise ValueError(f"Model '{model}' not found")
if model_obj.model_type != ModelType.embedding:
raise ValueError(f"Model '{model}' is not an embedding model")
params = dict(
model=model_obj.identifier,
input=input,
encoding_format=encoding_format,
dimensions=dimensions,
user=user,
)
provider = self.routing_table.get_provider_impl(model_obj.identifier)
return await provider.openai_embeddings(**params)
async def list_chat_completions(
self,
after: str | None = None,
limit: int | None = 20,
model: str | None = None,
order: Order | None = Order.desc,
) -> ListOpenAIChatCompletionResponse:
if self.store:
return await self.store.list_chat_completions(after, limit, model, order)
raise NotImplementedError("List chat completions is not supported: inference store is not configured.")
async def get_chat_completion(self, completion_id: str) -> OpenAICompletionWithInputMessages:
if self.store:
return await self.store.get_chat_completion(completion_id)
raise NotImplementedError("Get chat completion is not supported: inference store is not configured.")
return await self._nonstream_openai_chat_completion(provider, params)
async def _nonstream_openai_chat_completion(self, provider: Inference, params: dict) -> OpenAIChatCompletion:
response = await provider.openai_chat_completion(**params)
@ -622,3 +642,295 @@ class InferenceRouter(Inference):
status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}"
)
return health_statuses
class SafetyRouter(Safety):
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing SafetyRouter")
self.routing_table = routing_table
async def initialize(self) -> None:
logger.debug("SafetyRouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("SafetyRouter.shutdown")
pass
async def register_shield(
self,
shield_id: str,
provider_shield_id: str | None = None,
provider_id: str | None = None,
params: dict[str, Any] | None = None,
) -> Shield:
logger.debug(f"SafetyRouter.register_shield: {shield_id}")
return await self.routing_table.register_shield(shield_id, provider_shield_id, provider_id, params)
async def run_shield(
self,
shield_id: str,
messages: list[Message],
params: dict[str, Any] = None,
) -> RunShieldResponse:
logger.debug(f"SafetyRouter.run_shield: {shield_id}")
return await self.routing_table.get_provider_impl(shield_id).run_shield(
shield_id=shield_id,
messages=messages,
params=params,
)
class DatasetIORouter(DatasetIO):
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing DatasetIORouter")
self.routing_table = routing_table
async def initialize(self) -> None:
logger.debug("DatasetIORouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("DatasetIORouter.shutdown")
pass
async def register_dataset(
self,
purpose: DatasetPurpose,
source: DataSource,
metadata: dict[str, Any] | None = None,
dataset_id: str | None = None,
) -> None:
logger.debug(
f"DatasetIORouter.register_dataset: {purpose=} {source=} {metadata=} {dataset_id=}",
)
await self.routing_table.register_dataset(
purpose=purpose,
source=source,
metadata=metadata,
dataset_id=dataset_id,
)
async def iterrows(
self,
dataset_id: str,
start_index: int | None = None,
limit: int | None = None,
) -> PaginatedResponse:
logger.debug(
f"DatasetIORouter.iterrows: {dataset_id}, {start_index=} {limit=}",
)
return await self.routing_table.get_provider_impl(dataset_id).iterrows(
dataset_id=dataset_id,
start_index=start_index,
limit=limit,
)
async def append_rows(self, dataset_id: str, rows: list[dict[str, Any]]) -> None:
logger.debug(f"DatasetIORouter.append_rows: {dataset_id}, {len(rows)} rows")
return await self.routing_table.get_provider_impl(dataset_id).append_rows(
dataset_id=dataset_id,
rows=rows,
)
class ScoringRouter(Scoring):
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing ScoringRouter")
self.routing_table = routing_table
async def initialize(self) -> None:
logger.debug("ScoringRouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("ScoringRouter.shutdown")
pass
async def score_batch(
self,
dataset_id: str,
scoring_functions: dict[str, ScoringFnParams | None] = None,
save_results_dataset: bool = False,
) -> ScoreBatchResponse:
logger.debug(f"ScoringRouter.score_batch: {dataset_id}")
res = {}
for fn_identifier in scoring_functions.keys():
score_response = await self.routing_table.get_provider_impl(fn_identifier).score_batch(
dataset_id=dataset_id,
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
)
res.update(score_response.results)
if save_results_dataset:
raise NotImplementedError("Save results dataset not implemented yet")
return ScoreBatchResponse(
results=res,
)
async def score(
self,
input_rows: list[dict[str, Any]],
scoring_functions: dict[str, ScoringFnParams | None] = None,
) -> ScoreResponse:
logger.debug(f"ScoringRouter.score: {len(input_rows)} rows, {len(scoring_functions)} functions")
res = {}
# look up and map each scoring function to its provider impl
for fn_identifier in scoring_functions.keys():
score_response = await self.routing_table.get_provider_impl(fn_identifier).score(
input_rows=input_rows,
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
)
res.update(score_response.results)
return ScoreResponse(results=res)
class EvalRouter(Eval):
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing EvalRouter")
self.routing_table = routing_table
async def initialize(self) -> None:
logger.debug("EvalRouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("EvalRouter.shutdown")
pass
async def run_eval(
self,
benchmark_id: str,
benchmark_config: BenchmarkConfig,
) -> Job:
logger.debug(f"EvalRouter.run_eval: {benchmark_id}")
return await self.routing_table.get_provider_impl(benchmark_id).run_eval(
benchmark_id=benchmark_id,
benchmark_config=benchmark_config,
)
async def evaluate_rows(
self,
benchmark_id: str,
input_rows: list[dict[str, Any]],
scoring_functions: list[str],
benchmark_config: BenchmarkConfig,
) -> EvaluateResponse:
logger.debug(f"EvalRouter.evaluate_rows: {benchmark_id}, {len(input_rows)} rows")
return await self.routing_table.get_provider_impl(benchmark_id).evaluate_rows(
benchmark_id=benchmark_id,
input_rows=input_rows,
scoring_functions=scoring_functions,
benchmark_config=benchmark_config,
)
async def job_status(
self,
benchmark_id: str,
job_id: str,
) -> Job:
logger.debug(f"EvalRouter.job_status: {benchmark_id}, {job_id}")
return await self.routing_table.get_provider_impl(benchmark_id).job_status(benchmark_id, job_id)
async def job_cancel(
self,
benchmark_id: str,
job_id: str,
) -> None:
logger.debug(f"EvalRouter.job_cancel: {benchmark_id}, {job_id}")
await self.routing_table.get_provider_impl(benchmark_id).job_cancel(
benchmark_id,
job_id,
)
async def job_result(
self,
benchmark_id: str,
job_id: str,
) -> EvaluateResponse:
logger.debug(f"EvalRouter.job_result: {benchmark_id}, {job_id}")
return await self.routing_table.get_provider_impl(benchmark_id).job_result(
benchmark_id,
job_id,
)
class ToolRuntimeRouter(ToolRuntime):
class RagToolImpl(RAGToolRuntime):
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing ToolRuntimeRouter.RagToolImpl")
self.routing_table = routing_table
async def query(
self,
content: InterleavedContent,
vector_db_ids: list[str],
query_config: RAGQueryConfig | None = None,
) -> RAGQueryResult:
logger.debug(f"ToolRuntimeRouter.RagToolImpl.query: {vector_db_ids}")
return await self.routing_table.get_provider_impl("knowledge_search").query(
content, vector_db_ids, query_config
)
async def insert(
self,
documents: list[RAGDocument],
vector_db_id: str,
chunk_size_in_tokens: int = 512,
) -> None:
logger.debug(
f"ToolRuntimeRouter.RagToolImpl.insert: {vector_db_id}, {len(documents)} documents, chunk_size={chunk_size_in_tokens}"
)
return await self.routing_table.get_provider_impl("insert_into_memory").insert(
documents, vector_db_id, chunk_size_in_tokens
)
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing ToolRuntimeRouter")
self.routing_table = routing_table
# HACK ALERT this should be in sync with "get_all_api_endpoints()"
self.rag_tool = self.RagToolImpl(routing_table)
for method in ("query", "insert"):
setattr(self, f"rag_tool.{method}", getattr(self.rag_tool, method))
async def initialize(self) -> None:
logger.debug("ToolRuntimeRouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("ToolRuntimeRouter.shutdown")
pass
async def invoke_tool(self, tool_name: str, kwargs: dict[str, Any]) -> Any:
logger.debug(f"ToolRuntimeRouter.invoke_tool: {tool_name}")
return await self.routing_table.get_provider_impl(tool_name).invoke_tool(
tool_name=tool_name,
kwargs=kwargs,
)
async def list_runtime_tools(
self, tool_group_id: str | None = None, mcp_endpoint: URL | None = None
) -> ListToolDefsResponse:
logger.debug(f"ToolRuntimeRouter.list_runtime_tools: {tool_group_id}")
return await self.routing_table.get_provider_impl(tool_group_id).list_tools(tool_group_id, mcp_endpoint)

View file

@ -0,0 +1,634 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
import time
import uuid
from typing import Any
from pydantic import TypeAdapter
from llama_stack.apis.benchmarks import Benchmark, Benchmarks, ListBenchmarksResponse
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.common.type_system import ParamType
from llama_stack.apis.datasets import (
Dataset,
DatasetPurpose,
Datasets,
DatasetType,
DataSource,
ListDatasetsResponse,
RowsDataSource,
URIDataSource,
)
from llama_stack.apis.models import ListModelsResponse, Model, Models, ModelType, OpenAIListModelsResponse, OpenAIModel
from llama_stack.apis.resource import ResourceType
from llama_stack.apis.scoring_functions import (
ListScoringFunctionsResponse,
ScoringFn,
ScoringFnParams,
ScoringFunctions,
)
from llama_stack.apis.shields import ListShieldsResponse, Shield, Shields
from llama_stack.apis.tools import (
ListToolGroupsResponse,
ListToolsResponse,
Tool,
ToolGroup,
ToolGroups,
ToolHost,
)
from llama_stack.apis.vector_dbs import ListVectorDBsResponse, VectorDB, VectorDBs
from llama_stack.distribution.access_control import check_access
from llama_stack.distribution.datatypes import (
AccessAttributes,
BenchmarkWithACL,
DatasetWithACL,
ModelWithACL,
RoutableObject,
RoutableObjectWithProvider,
RoutedProtocol,
ScoringFnWithACL,
ShieldWithACL,
ToolGroupWithACL,
ToolWithACL,
VectorDBWithACL,
)
from llama_stack.distribution.request_headers import get_auth_attributes
from llama_stack.distribution.store import DistributionRegistry
from llama_stack.providers.datatypes import Api, RoutingTable
logger = logging.getLogger(__name__)
def get_impl_api(p: Any) -> Api:
return p.__provider_spec__.api
# TODO: this should return the registered object for all APIs
async def register_object_with_provider(obj: RoutableObject, p: Any) -> RoutableObject:
api = get_impl_api(p)
assert obj.provider_id != "remote", "Remote provider should not be registered"
if api == Api.inference:
return await p.register_model(obj)
elif api == Api.safety:
return await p.register_shield(obj)
elif api == Api.vector_io:
return await p.register_vector_db(obj)
elif api == Api.datasetio:
return await p.register_dataset(obj)
elif api == Api.scoring:
return await p.register_scoring_function(obj)
elif api == Api.eval:
return await p.register_benchmark(obj)
elif api == Api.tool_runtime:
return await p.register_tool(obj)
else:
raise ValueError(f"Unknown API {api} for registering object with provider")
async def unregister_object_from_provider(obj: RoutableObject, p: Any) -> None:
api = get_impl_api(p)
if api == Api.vector_io:
return await p.unregister_vector_db(obj.identifier)
elif api == Api.inference:
return await p.unregister_model(obj.identifier)
elif api == Api.datasetio:
return await p.unregister_dataset(obj.identifier)
elif api == Api.tool_runtime:
return await p.unregister_tool(obj.identifier)
else:
raise ValueError(f"Unregister not supported for {api}")
Registry = dict[str, list[RoutableObjectWithProvider]]
class CommonRoutingTableImpl(RoutingTable):
def __init__(
self,
impls_by_provider_id: dict[str, RoutedProtocol],
dist_registry: DistributionRegistry,
) -> None:
self.impls_by_provider_id = impls_by_provider_id
self.dist_registry = dist_registry
async def initialize(self) -> None:
async def add_objects(objs: list[RoutableObjectWithProvider], provider_id: str, cls) -> None:
for obj in objs:
if cls is None:
obj.provider_id = provider_id
else:
# Create a copy of the model data and explicitly set provider_id
model_data = obj.model_dump()
model_data["provider_id"] = provider_id
obj = cls(**model_data)
await self.dist_registry.register(obj)
# Register all objects from providers
for pid, p in self.impls_by_provider_id.items():
api = get_impl_api(p)
if api == Api.inference:
p.model_store = self
elif api == Api.safety:
p.shield_store = self
elif api == Api.vector_io:
p.vector_db_store = self
elif api == Api.datasetio:
p.dataset_store = self
elif api == Api.scoring:
p.scoring_function_store = self
scoring_functions = await p.list_scoring_functions()
await add_objects(scoring_functions, pid, ScoringFn)
elif api == Api.eval:
p.benchmark_store = self
elif api == Api.tool_runtime:
p.tool_store = self
async def shutdown(self) -> None:
for p in self.impls_by_provider_id.values():
await p.shutdown()
def get_provider_impl(self, routing_key: str, provider_id: str | None = None) -> Any:
def apiname_object():
if isinstance(self, ModelsRoutingTable):
return ("Inference", "model")
elif isinstance(self, ShieldsRoutingTable):
return ("Safety", "shield")
elif isinstance(self, VectorDBsRoutingTable):
return ("VectorIO", "vector_db")
elif isinstance(self, DatasetsRoutingTable):
return ("DatasetIO", "dataset")
elif isinstance(self, ScoringFunctionsRoutingTable):
return ("Scoring", "scoring_function")
elif isinstance(self, BenchmarksRoutingTable):
return ("Eval", "benchmark")
elif isinstance(self, ToolGroupsRoutingTable):
return ("Tools", "tool")
else:
raise ValueError("Unknown routing table type")
apiname, objtype = apiname_object()
# Get objects from disk registry
obj = self.dist_registry.get_cached(objtype, routing_key)
if not obj:
provider_ids = list(self.impls_by_provider_id.keys())
if len(provider_ids) > 1:
provider_ids_str = f"any of the providers: {', '.join(provider_ids)}"
else:
provider_ids_str = f"provider: `{provider_ids[0]}`"
raise ValueError(
f"{objtype.capitalize()} `{routing_key}` not served by {provider_ids_str}. Make sure there is an {apiname} provider serving this {objtype}."
)
if not provider_id or provider_id == obj.provider_id:
return self.impls_by_provider_id[obj.provider_id]
raise ValueError(f"Provider not found for `{routing_key}`")
async def get_object_by_identifier(self, type: str, identifier: str) -> RoutableObjectWithProvider | None:
# Get from disk registry
obj = await self.dist_registry.get(type, identifier)
if not obj:
return None
# Check if user has permission to access this object
if not check_access(obj.identifier, getattr(obj, "access_attributes", None), get_auth_attributes()):
logger.debug(f"Access denied to {type} '{identifier}' based on attribute mismatch")
return None
return obj
async def unregister_object(self, obj: RoutableObjectWithProvider) -> None:
await self.dist_registry.delete(obj.type, obj.identifier)
await unregister_object_from_provider(obj, self.impls_by_provider_id[obj.provider_id])
async def register_object(self, obj: RoutableObjectWithProvider) -> RoutableObjectWithProvider:
# if provider_id is not specified, pick an arbitrary one from existing entries
if not obj.provider_id and len(self.impls_by_provider_id) > 0:
obj.provider_id = list(self.impls_by_provider_id.keys())[0]
if obj.provider_id not in self.impls_by_provider_id:
raise ValueError(f"Provider `{obj.provider_id}` not found")
p = self.impls_by_provider_id[obj.provider_id]
# If object supports access control but no attributes set, use creator's attributes
if not obj.access_attributes:
creator_attributes = get_auth_attributes()
if creator_attributes:
obj.access_attributes = AccessAttributes(**creator_attributes)
logger.info(f"Setting access attributes for {obj.type} '{obj.identifier}' based on creator's identity")
registered_obj = await register_object_with_provider(obj, p)
# TODO: This needs to be fixed for all APIs once they return the registered object
if obj.type == ResourceType.model.value:
await self.dist_registry.register(registered_obj)
return registered_obj
else:
await self.dist_registry.register(obj)
return obj
async def get_all_with_type(self, type: str) -> list[RoutableObjectWithProvider]:
objs = await self.dist_registry.get_all()
filtered_objs = [obj for obj in objs if obj.type == type]
# Apply attribute-based access control filtering
if filtered_objs:
filtered_objs = [
obj
for obj in filtered_objs
if check_access(obj.identifier, getattr(obj, "access_attributes", None), get_auth_attributes())
]
return filtered_objs
class ModelsRoutingTable(CommonRoutingTableImpl, Models):
async def list_models(self) -> ListModelsResponse:
return ListModelsResponse(data=await self.get_all_with_type("model"))
async def openai_list_models(self) -> OpenAIListModelsResponse:
models = await self.get_all_with_type("model")
openai_models = [
OpenAIModel(
id=model.identifier,
object="model",
created=int(time.time()),
owned_by="llama_stack",
)
for model in models
]
return OpenAIListModelsResponse(data=openai_models)
async def get_model(self, model_id: str) -> Model:
model = await self.get_object_by_identifier("model", model_id)
if model is None:
raise ValueError(f"Model '{model_id}' not found")
return model
async def register_model(
self,
model_id: str,
provider_model_id: str | None = None,
provider_id: str | None = None,
metadata: dict[str, Any] | None = None,
model_type: ModelType | None = None,
) -> Model:
if provider_model_id is None:
provider_model_id = model_id
if provider_id is None:
# If provider_id not specified, use the only provider if it supports this model
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
f"No provider specified and multiple providers available. Please specify a provider_id. Available providers: {self.impls_by_provider_id.keys()}"
)
if metadata is None:
metadata = {}
if model_type is None:
model_type = ModelType.llm
if "embedding_dimension" not in metadata and model_type == ModelType.embedding:
raise ValueError("Embedding model must have an embedding dimension in its metadata")
model = ModelWithACL(
identifier=model_id,
provider_resource_id=provider_model_id,
provider_id=provider_id,
metadata=metadata,
model_type=model_type,
)
registered_model = await self.register_object(model)
return registered_model
async def unregister_model(self, model_id: str) -> None:
existing_model = await self.get_model(model_id)
if existing_model is None:
raise ValueError(f"Model {model_id} not found")
await self.unregister_object(existing_model)
class ShieldsRoutingTable(CommonRoutingTableImpl, Shields):
async def list_shields(self) -> ListShieldsResponse:
return ListShieldsResponse(data=await self.get_all_with_type(ResourceType.shield.value))
async def get_shield(self, identifier: str) -> Shield:
shield = await self.get_object_by_identifier("shield", identifier)
if shield is None:
raise ValueError(f"Shield '{identifier}' not found")
return shield
async def register_shield(
self,
shield_id: str,
provider_shield_id: str | None = None,
provider_id: str | None = None,
params: dict[str, Any] | None = None,
) -> Shield:
if provider_shield_id is None:
provider_shield_id = shield_id
if provider_id is None:
# If provider_id not specified, use the only provider if it supports this shield type
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
"No provider specified and multiple providers available. Please specify a provider_id."
)
if params is None:
params = {}
shield = ShieldWithACL(
identifier=shield_id,
provider_resource_id=provider_shield_id,
provider_id=provider_id,
params=params,
)
await self.register_object(shield)
return shield
class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
async def list_vector_dbs(self) -> ListVectorDBsResponse:
return ListVectorDBsResponse(data=await self.get_all_with_type("vector_db"))
async def get_vector_db(self, vector_db_id: str) -> VectorDB:
vector_db = await self.get_object_by_identifier("vector_db", vector_db_id)
if vector_db is None:
raise ValueError(f"Vector DB '{vector_db_id}' not found")
return vector_db
async def register_vector_db(
self,
vector_db_id: str,
embedding_model: str,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorDB:
if provider_vector_db_id is None:
provider_vector_db_id = vector_db_id
if provider_id is None:
if len(self.impls_by_provider_id) > 0:
provider_id = list(self.impls_by_provider_id.keys())[0]
if len(self.impls_by_provider_id) > 1:
logger.warning(
f"No provider specified and multiple providers available. Arbitrarily selected the first provider {provider_id}."
)
else:
raise ValueError("No provider available. Please configure a vector_io provider.")
model = await self.get_object_by_identifier("model", embedding_model)
if model is None:
raise ValueError(f"Model {embedding_model} not found")
if model.model_type != ModelType.embedding:
raise ValueError(f"Model {embedding_model} is not an embedding model")
if "embedding_dimension" not in model.metadata:
raise ValueError(f"Model {embedding_model} does not have an embedding dimension")
vector_db_data = {
"identifier": vector_db_id,
"type": ResourceType.vector_db.value,
"provider_id": provider_id,
"provider_resource_id": provider_vector_db_id,
"embedding_model": embedding_model,
"embedding_dimension": model.metadata["embedding_dimension"],
}
vector_db = TypeAdapter(VectorDBWithACL).validate_python(vector_db_data)
await self.register_object(vector_db)
return vector_db
async def unregister_vector_db(self, vector_db_id: str) -> None:
existing_vector_db = await self.get_vector_db(vector_db_id)
if existing_vector_db is None:
raise ValueError(f"Vector DB {vector_db_id} not found")
await self.unregister_object(existing_vector_db)
class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
async def list_datasets(self) -> ListDatasetsResponse:
return ListDatasetsResponse(data=await self.get_all_with_type(ResourceType.dataset.value))
async def get_dataset(self, dataset_id: str) -> Dataset:
dataset = await self.get_object_by_identifier("dataset", dataset_id)
if dataset is None:
raise ValueError(f"Dataset '{dataset_id}' not found")
return dataset
async def register_dataset(
self,
purpose: DatasetPurpose,
source: DataSource,
metadata: dict[str, Any] | None = None,
dataset_id: str | None = None,
) -> Dataset:
if isinstance(source, dict):
if source["type"] == "uri":
source = URIDataSource.parse_obj(source)
elif source["type"] == "rows":
source = RowsDataSource.parse_obj(source)
if not dataset_id:
dataset_id = f"dataset-{str(uuid.uuid4())}"
provider_dataset_id = dataset_id
# infer provider from source
if metadata:
if metadata.get("provider_id"):
provider_id = metadata.get("provider_id") # pass through from nvidia datasetio
elif source.type == DatasetType.rows.value:
provider_id = "localfs"
elif source.type == DatasetType.uri.value:
# infer provider from uri
if source.uri.startswith("huggingface"):
provider_id = "huggingface"
else:
provider_id = "localfs"
else:
raise ValueError(f"Unknown data source type: {source.type}")
if metadata is None:
metadata = {}
dataset = DatasetWithACL(
identifier=dataset_id,
provider_resource_id=provider_dataset_id,
provider_id=provider_id,
purpose=purpose,
source=source,
metadata=metadata,
)
await self.register_object(dataset)
return dataset
async def unregister_dataset(self, dataset_id: str) -> None:
dataset = await self.get_dataset(dataset_id)
if dataset is None:
raise ValueError(f"Dataset {dataset_id} not found")
await self.unregister_object(dataset)
class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, ScoringFunctions):
async def list_scoring_functions(self) -> ListScoringFunctionsResponse:
return ListScoringFunctionsResponse(data=await self.get_all_with_type(ResourceType.scoring_function.value))
async def get_scoring_function(self, scoring_fn_id: str) -> ScoringFn:
scoring_fn = await self.get_object_by_identifier("scoring_function", scoring_fn_id)
if scoring_fn is None:
raise ValueError(f"Scoring function '{scoring_fn_id}' not found")
return scoring_fn
async def register_scoring_function(
self,
scoring_fn_id: str,
description: str,
return_type: ParamType,
provider_scoring_fn_id: str | None = None,
provider_id: str | None = None,
params: ScoringFnParams | None = None,
) -> None:
if provider_scoring_fn_id is None:
provider_scoring_fn_id = scoring_fn_id
if provider_id is None:
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
"No provider specified and multiple providers available. Please specify a provider_id."
)
scoring_fn = ScoringFnWithACL(
identifier=scoring_fn_id,
description=description,
return_type=return_type,
provider_resource_id=provider_scoring_fn_id,
provider_id=provider_id,
params=params,
)
scoring_fn.provider_id = provider_id
await self.register_object(scoring_fn)
class BenchmarksRoutingTable(CommonRoutingTableImpl, Benchmarks):
async def list_benchmarks(self) -> ListBenchmarksResponse:
return ListBenchmarksResponse(data=await self.get_all_with_type("benchmark"))
async def get_benchmark(self, benchmark_id: str) -> Benchmark:
benchmark = await self.get_object_by_identifier("benchmark", benchmark_id)
if benchmark is None:
raise ValueError(f"Benchmark '{benchmark_id}' not found")
return benchmark
async def register_benchmark(
self,
benchmark_id: str,
dataset_id: str,
scoring_functions: list[str],
metadata: dict[str, Any] | None = None,
provider_benchmark_id: str | None = None,
provider_id: str | None = None,
) -> None:
if metadata is None:
metadata = {}
if provider_id is None:
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
"No provider specified and multiple providers available. Please specify a provider_id."
)
if provider_benchmark_id is None:
provider_benchmark_id = benchmark_id
benchmark = BenchmarkWithACL(
identifier=benchmark_id,
dataset_id=dataset_id,
scoring_functions=scoring_functions,
metadata=metadata,
provider_id=provider_id,
provider_resource_id=provider_benchmark_id,
)
await self.register_object(benchmark)
class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
async def list_tools(self, toolgroup_id: str | None = None) -> ListToolsResponse:
tools = await self.get_all_with_type("tool")
if toolgroup_id:
tools = [tool for tool in tools if tool.toolgroup_id == toolgroup_id]
return ListToolsResponse(data=tools)
async def list_tool_groups(self) -> ListToolGroupsResponse:
return ListToolGroupsResponse(data=await self.get_all_with_type("tool_group"))
async def get_tool_group(self, toolgroup_id: str) -> ToolGroup:
tool_group = await self.get_object_by_identifier("tool_group", toolgroup_id)
if tool_group is None:
raise ValueError(f"Tool group '{toolgroup_id}' not found")
return tool_group
async def get_tool(self, tool_name: str) -> Tool:
return await self.get_object_by_identifier("tool", tool_name)
async def register_tool_group(
self,
toolgroup_id: str,
provider_id: str,
mcp_endpoint: URL | None = None,
args: dict[str, Any] | None = None,
) -> None:
tools = []
tool_defs = await self.impls_by_provider_id[provider_id].list_runtime_tools(toolgroup_id, mcp_endpoint)
tool_host = ToolHost.model_context_protocol if mcp_endpoint else ToolHost.distribution
for tool_def in tool_defs.data:
tools.append(
ToolWithACL(
identifier=tool_def.name,
toolgroup_id=toolgroup_id,
description=tool_def.description or "",
parameters=tool_def.parameters or [],
provider_id=provider_id,
provider_resource_id=tool_def.name,
metadata=tool_def.metadata,
tool_host=tool_host,
)
)
for tool in tools:
existing_tool = await self.get_tool(tool.identifier)
# Compare existing and new object if one exists
if existing_tool:
existing_dict = existing_tool.model_dump()
new_dict = tool.model_dump()
if existing_dict != new_dict:
raise ValueError(
f"Object {tool.identifier} already exists in registry. Please use a different identifier."
)
await self.register_object(tool)
await self.dist_registry.register(
ToolGroupWithACL(
identifier=toolgroup_id,
provider_id=provider_id,
provider_resource_id=toolgroup_id,
mcp_endpoint=mcp_endpoint,
args=args,
)
)
async def unregister_toolgroup(self, toolgroup_id: str) -> None:
tool_group = await self.get_tool_group(toolgroup_id)
if tool_group is None:
raise ValueError(f"Tool group {toolgroup_id} not found")
tools = await self.list_tools(toolgroup_id)
for tool in getattr(tools, "data", []):
await self.unregister_object(tool)
await self.unregister_object(tool_group)
async def shutdown(self) -> None:
pass

View file

@ -1,57 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.inference import (
Message,
)
from llama_stack.apis.safety import RunShieldResponse, Safety
from llama_stack.apis.shields import Shield
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import RoutingTable
logger = get_logger(name=__name__, category="core")
class SafetyRouter(Safety):
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing SafetyRouter")
self.routing_table = routing_table
async def initialize(self) -> None:
logger.debug("SafetyRouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("SafetyRouter.shutdown")
pass
async def register_shield(
self,
shield_id: str,
provider_shield_id: str | None = None,
provider_id: str | None = None,
params: dict[str, Any] | None = None,
) -> Shield:
logger.debug(f"SafetyRouter.register_shield: {shield_id}")
return await self.routing_table.register_shield(shield_id, provider_shield_id, provider_id, params)
async def run_shield(
self,
shield_id: str,
messages: list[Message],
params: dict[str, Any] = None,
) -> RunShieldResponse:
logger.debug(f"SafetyRouter.run_shield: {shield_id}")
return await self.routing_table.get_provider_impl(shield_id).run_shield(
shield_id=shield_id,
messages=messages,
params=params,
)

View file

@ -1,92 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.common.content_types import (
URL,
InterleavedContent,
)
from llama_stack.apis.tools import (
ListToolsResponse,
RAGDocument,
RAGQueryConfig,
RAGQueryResult,
RAGToolRuntime,
ToolRuntime,
)
from llama_stack.log import get_logger
from ..routing_tables.toolgroups import ToolGroupsRoutingTable
logger = get_logger(name=__name__, category="core")
class ToolRuntimeRouter(ToolRuntime):
class RagToolImpl(RAGToolRuntime):
def __init__(
self,
routing_table: ToolGroupsRoutingTable,
) -> None:
logger.debug("Initializing ToolRuntimeRouter.RagToolImpl")
self.routing_table = routing_table
async def query(
self,
content: InterleavedContent,
vector_db_ids: list[str],
query_config: RAGQueryConfig | None = None,
) -> RAGQueryResult:
logger.debug(f"ToolRuntimeRouter.RagToolImpl.query: {vector_db_ids}")
return await self.routing_table.get_provider_impl("knowledge_search").query(
content, vector_db_ids, query_config
)
async def insert(
self,
documents: list[RAGDocument],
vector_db_id: str,
chunk_size_in_tokens: int = 512,
) -> None:
logger.debug(
f"ToolRuntimeRouter.RagToolImpl.insert: {vector_db_id}, {len(documents)} documents, chunk_size={chunk_size_in_tokens}"
)
return await self.routing_table.get_provider_impl("insert_into_memory").insert(
documents, vector_db_id, chunk_size_in_tokens
)
def __init__(
self,
routing_table: ToolGroupsRoutingTable,
) -> None:
logger.debug("Initializing ToolRuntimeRouter")
self.routing_table = routing_table
# HACK ALERT this should be in sync with "get_all_api_endpoints()"
self.rag_tool = self.RagToolImpl(routing_table)
for method in ("query", "insert"):
setattr(self, f"rag_tool.{method}", getattr(self.rag_tool, method))
async def initialize(self) -> None:
logger.debug("ToolRuntimeRouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("ToolRuntimeRouter.shutdown")
pass
async def invoke_tool(self, tool_name: str, kwargs: dict[str, Any]) -> Any:
logger.debug(f"ToolRuntimeRouter.invoke_tool: {tool_name}")
return await self.routing_table.get_provider_impl(tool_name).invoke_tool(
tool_name=tool_name,
kwargs=kwargs,
)
async def list_runtime_tools(
self, tool_group_id: str | None = None, mcp_endpoint: URL | None = None
) -> ListToolsResponse:
logger.debug(f"ToolRuntimeRouter.list_runtime_tools: {tool_group_id}")
return await self.routing_table.list_tools(tool_group_id)

View file

@ -1,72 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.common.content_types import (
InterleavedContent,
)
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import RoutingTable
logger = get_logger(name=__name__, category="core")
class VectorIORouter(VectorIO):
"""Routes to an provider based on the vector db identifier"""
def __init__(
self,
routing_table: RoutingTable,
) -> None:
logger.debug("Initializing VectorIORouter")
self.routing_table = routing_table
async def initialize(self) -> None:
logger.debug("VectorIORouter.initialize")
pass
async def shutdown(self) -> None:
logger.debug("VectorIORouter.shutdown")
pass
async def register_vector_db(
self,
vector_db_id: str,
embedding_model: str,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> None:
logger.debug(f"VectorIORouter.register_vector_db: {vector_db_id}, {embedding_model}")
await self.routing_table.register_vector_db(
vector_db_id,
embedding_model,
embedding_dimension,
provider_id,
provider_vector_db_id,
)
async def insert_chunks(
self,
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
logger.debug(
f"VectorIORouter.insert_chunks: {vector_db_id}, {len(chunks)} chunks, ttl_seconds={ttl_seconds}, chunk_ids={[chunk.metadata['document_id'] for chunk in chunks[:3]]}{' and more...' if len(chunks) > 3 else ''}",
)
return await self.routing_table.get_provider_impl(vector_db_id).insert_chunks(vector_db_id, chunks, ttl_seconds)
async def query_chunks(
self,
vector_db_id: str,
query: InterleavedContent,
params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
logger.debug(f"VectorIORouter.query_chunks: {vector_db_id}")
return await self.routing_table.get_provider_impl(vector_db_id).query_chunks(vector_db_id, query, params)

View file

@ -1,5 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -1,58 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.benchmarks import Benchmark, Benchmarks, ListBenchmarksResponse
from llama_stack.distribution.datatypes import (
BenchmarkWithACL,
)
from llama_stack.log import get_logger
from .common import CommonRoutingTableImpl
logger = get_logger(name=__name__, category="core")
class BenchmarksRoutingTable(CommonRoutingTableImpl, Benchmarks):
async def list_benchmarks(self) -> ListBenchmarksResponse:
return ListBenchmarksResponse(data=await self.get_all_with_type("benchmark"))
async def get_benchmark(self, benchmark_id: str) -> Benchmark:
benchmark = await self.get_object_by_identifier("benchmark", benchmark_id)
if benchmark is None:
raise ValueError(f"Benchmark '{benchmark_id}' not found")
return benchmark
async def register_benchmark(
self,
benchmark_id: str,
dataset_id: str,
scoring_functions: list[str],
metadata: dict[str, Any] | None = None,
provider_benchmark_id: str | None = None,
provider_id: str | None = None,
) -> None:
if metadata is None:
metadata = {}
if provider_id is None:
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
"No provider specified and multiple providers available. Please specify a provider_id."
)
if provider_benchmark_id is None:
provider_benchmark_id = benchmark_id
benchmark = BenchmarkWithACL(
identifier=benchmark_id,
dataset_id=dataset_id,
scoring_functions=scoring_functions,
metadata=metadata,
provider_id=provider_id,
provider_resource_id=provider_benchmark_id,
)
await self.register_object(benchmark)

View file

@ -1,218 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.resource import ResourceType
from llama_stack.apis.scoring_functions import ScoringFn
from llama_stack.distribution.access_control import check_access
from llama_stack.distribution.datatypes import (
AccessAttributes,
RoutableObject,
RoutableObjectWithProvider,
RoutedProtocol,
)
from llama_stack.distribution.request_headers import get_auth_attributes
from llama_stack.distribution.store import DistributionRegistry
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import Api, RoutingTable
logger = get_logger(name=__name__, category="core")
def get_impl_api(p: Any) -> Api:
return p.__provider_spec__.api
# TODO: this should return the registered object for all APIs
async def register_object_with_provider(obj: RoutableObject, p: Any) -> RoutableObject:
api = get_impl_api(p)
assert obj.provider_id != "remote", "Remote provider should not be registered"
if api == Api.inference:
return await p.register_model(obj)
elif api == Api.safety:
return await p.register_shield(obj)
elif api == Api.vector_io:
return await p.register_vector_db(obj)
elif api == Api.datasetio:
return await p.register_dataset(obj)
elif api == Api.scoring:
return await p.register_scoring_function(obj)
elif api == Api.eval:
return await p.register_benchmark(obj)
elif api == Api.tool_runtime:
return await p.register_toolgroup(obj)
else:
raise ValueError(f"Unknown API {api} for registering object with provider")
async def unregister_object_from_provider(obj: RoutableObject, p: Any) -> None:
api = get_impl_api(p)
if api == Api.vector_io:
return await p.unregister_vector_db(obj.identifier)
elif api == Api.inference:
return await p.unregister_model(obj.identifier)
elif api == Api.datasetio:
return await p.unregister_dataset(obj.identifier)
elif api == Api.tool_runtime:
return await p.unregister_toolgroup(obj.identifier)
else:
raise ValueError(f"Unregister not supported for {api}")
Registry = dict[str, list[RoutableObjectWithProvider]]
class CommonRoutingTableImpl(RoutingTable):
def __init__(
self,
impls_by_provider_id: dict[str, RoutedProtocol],
dist_registry: DistributionRegistry,
) -> None:
self.impls_by_provider_id = impls_by_provider_id
self.dist_registry = dist_registry
async def initialize(self) -> None:
async def add_objects(objs: list[RoutableObjectWithProvider], provider_id: str, cls) -> None:
for obj in objs:
if cls is None:
obj.provider_id = provider_id
else:
# Create a copy of the model data and explicitly set provider_id
model_data = obj.model_dump()
model_data["provider_id"] = provider_id
obj = cls(**model_data)
await self.dist_registry.register(obj)
# Register all objects from providers
for pid, p in self.impls_by_provider_id.items():
api = get_impl_api(p)
if api == Api.inference:
p.model_store = self
elif api == Api.safety:
p.shield_store = self
elif api == Api.vector_io:
p.vector_db_store = self
elif api == Api.datasetio:
p.dataset_store = self
elif api == Api.scoring:
p.scoring_function_store = self
scoring_functions = await p.list_scoring_functions()
await add_objects(scoring_functions, pid, ScoringFn)
elif api == Api.eval:
p.benchmark_store = self
elif api == Api.tool_runtime:
p.tool_store = self
async def shutdown(self) -> None:
for p in self.impls_by_provider_id.values():
await p.shutdown()
def get_provider_impl(self, routing_key: str, provider_id: str | None = None) -> Any:
from .benchmarks import BenchmarksRoutingTable
from .datasets import DatasetsRoutingTable
from .models import ModelsRoutingTable
from .scoring_functions import ScoringFunctionsRoutingTable
from .shields import ShieldsRoutingTable
from .toolgroups import ToolGroupsRoutingTable
from .vector_dbs import VectorDBsRoutingTable
def apiname_object():
if isinstance(self, ModelsRoutingTable):
return ("Inference", "model")
elif isinstance(self, ShieldsRoutingTable):
return ("Safety", "shield")
elif isinstance(self, VectorDBsRoutingTable):
return ("VectorIO", "vector_db")
elif isinstance(self, DatasetsRoutingTable):
return ("DatasetIO", "dataset")
elif isinstance(self, ScoringFunctionsRoutingTable):
return ("Scoring", "scoring_function")
elif isinstance(self, BenchmarksRoutingTable):
return ("Eval", "benchmark")
elif isinstance(self, ToolGroupsRoutingTable):
return ("ToolGroups", "tool_group")
else:
raise ValueError("Unknown routing table type")
apiname, objtype = apiname_object()
# Get objects from disk registry
obj = self.dist_registry.get_cached(objtype, routing_key)
if not obj:
provider_ids = list(self.impls_by_provider_id.keys())
if len(provider_ids) > 1:
provider_ids_str = f"any of the providers: {', '.join(provider_ids)}"
else:
provider_ids_str = f"provider: `{provider_ids[0]}`"
raise ValueError(
f"{objtype.capitalize()} `{routing_key}` not served by {provider_ids_str}. Make sure there is an {apiname} provider serving this {objtype}."
)
if not provider_id or provider_id == obj.provider_id:
return self.impls_by_provider_id[obj.provider_id]
raise ValueError(f"Provider not found for `{routing_key}`")
async def get_object_by_identifier(self, type: str, identifier: str) -> RoutableObjectWithProvider | None:
# Get from disk registry
obj = await self.dist_registry.get(type, identifier)
if not obj:
return None
# Check if user has permission to access this object
if not check_access(obj.identifier, getattr(obj, "access_attributes", None), get_auth_attributes()):
logger.debug(f"Access denied to {type} '{identifier}' based on attribute mismatch")
return None
return obj
async def unregister_object(self, obj: RoutableObjectWithProvider) -> None:
await self.dist_registry.delete(obj.type, obj.identifier)
await unregister_object_from_provider(obj, self.impls_by_provider_id[obj.provider_id])
async def register_object(self, obj: RoutableObjectWithProvider) -> RoutableObjectWithProvider:
# if provider_id is not specified, pick an arbitrary one from existing entries
if not obj.provider_id and len(self.impls_by_provider_id) > 0:
obj.provider_id = list(self.impls_by_provider_id.keys())[0]
if obj.provider_id not in self.impls_by_provider_id:
raise ValueError(f"Provider `{obj.provider_id}` not found")
p = self.impls_by_provider_id[obj.provider_id]
# If object supports access control but no attributes set, use creator's attributes
if not obj.access_attributes:
creator_attributes = get_auth_attributes()
if creator_attributes:
obj.access_attributes = AccessAttributes(**creator_attributes)
logger.info(f"Setting access attributes for {obj.type} '{obj.identifier}' based on creator's identity")
registered_obj = await register_object_with_provider(obj, p)
# TODO: This needs to be fixed for all APIs once they return the registered object
if obj.type == ResourceType.model.value:
await self.dist_registry.register(registered_obj)
return registered_obj
else:
await self.dist_registry.register(obj)
return obj
async def get_all_with_type(self, type: str) -> list[RoutableObjectWithProvider]:
objs = await self.dist_registry.get_all()
filtered_objs = [obj for obj in objs if obj.type == type]
# Apply attribute-based access control filtering
if filtered_objs:
filtered_objs = [
obj
for obj in filtered_objs
if check_access(obj.identifier, getattr(obj, "access_attributes", None), get_auth_attributes())
]
return filtered_objs

View file

@ -1,93 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import uuid
from typing import Any
from llama_stack.apis.datasets import (
Dataset,
DatasetPurpose,
Datasets,
DatasetType,
DataSource,
ListDatasetsResponse,
RowsDataSource,
URIDataSource,
)
from llama_stack.apis.resource import ResourceType
from llama_stack.distribution.datatypes import (
DatasetWithACL,
)
from llama_stack.log import get_logger
from .common import CommonRoutingTableImpl
logger = get_logger(name=__name__, category="core")
class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
async def list_datasets(self) -> ListDatasetsResponse:
return ListDatasetsResponse(data=await self.get_all_with_type(ResourceType.dataset.value))
async def get_dataset(self, dataset_id: str) -> Dataset:
dataset = await self.get_object_by_identifier("dataset", dataset_id)
if dataset is None:
raise ValueError(f"Dataset '{dataset_id}' not found")
return dataset
async def register_dataset(
self,
purpose: DatasetPurpose,
source: DataSource,
metadata: dict[str, Any] | None = None,
dataset_id: str | None = None,
) -> Dataset:
if isinstance(source, dict):
if source["type"] == "uri":
source = URIDataSource.parse_obj(source)
elif source["type"] == "rows":
source = RowsDataSource.parse_obj(source)
if not dataset_id:
dataset_id = f"dataset-{str(uuid.uuid4())}"
provider_dataset_id = dataset_id
# infer provider from source
if metadata:
if metadata.get("provider_id"):
provider_id = metadata.get("provider_id") # pass through from nvidia datasetio
elif source.type == DatasetType.rows.value:
provider_id = "localfs"
elif source.type == DatasetType.uri.value:
# infer provider from uri
if source.uri.startswith("huggingface"):
provider_id = "huggingface"
else:
provider_id = "localfs"
else:
raise ValueError(f"Unknown data source type: {source.type}")
if metadata is None:
metadata = {}
dataset = DatasetWithACL(
identifier=dataset_id,
provider_resource_id=provider_dataset_id,
provider_id=provider_id,
purpose=purpose,
source=source,
metadata=metadata,
)
await self.register_object(dataset)
return dataset
async def unregister_dataset(self, dataset_id: str) -> None:
dataset = await self.get_dataset(dataset_id)
if dataset is None:
raise ValueError(f"Dataset {dataset_id} not found")
await self.unregister_object(dataset)

View file

@ -1,82 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import time
from typing import Any
from llama_stack.apis.models import ListModelsResponse, Model, Models, ModelType, OpenAIListModelsResponse, OpenAIModel
from llama_stack.distribution.datatypes import (
ModelWithACL,
)
from llama_stack.log import get_logger
from .common import CommonRoutingTableImpl
logger = get_logger(name=__name__, category="core")
class ModelsRoutingTable(CommonRoutingTableImpl, Models):
async def list_models(self) -> ListModelsResponse:
return ListModelsResponse(data=await self.get_all_with_type("model"))
async def openai_list_models(self) -> OpenAIListModelsResponse:
models = await self.get_all_with_type("model")
openai_models = [
OpenAIModel(
id=model.identifier,
object="model",
created=int(time.time()),
owned_by="llama_stack",
)
for model in models
]
return OpenAIListModelsResponse(data=openai_models)
async def get_model(self, model_id: str) -> Model:
model = await self.get_object_by_identifier("model", model_id)
if model is None:
raise ValueError(f"Model '{model_id}' not found")
return model
async def register_model(
self,
model_id: str,
provider_model_id: str | None = None,
provider_id: str | None = None,
metadata: dict[str, Any] | None = None,
model_type: ModelType | None = None,
) -> Model:
if provider_model_id is None:
provider_model_id = model_id
if provider_id is None:
# If provider_id not specified, use the only provider if it supports this model
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
f"No provider specified and multiple providers available. Please specify a provider_id. Available providers: {self.impls_by_provider_id.keys()}"
)
if metadata is None:
metadata = {}
if model_type is None:
model_type = ModelType.llm
if "embedding_dimension" not in metadata and model_type == ModelType.embedding:
raise ValueError("Embedding model must have an embedding dimension in its metadata")
model = ModelWithACL(
identifier=model_id,
provider_resource_id=provider_model_id,
provider_id=provider_id,
metadata=metadata,
model_type=model_type,
)
registered_model = await self.register_object(model)
return registered_model
async def unregister_model(self, model_id: str) -> None:
existing_model = await self.get_model(model_id)
if existing_model is None:
raise ValueError(f"Model {model_id} not found")
await self.unregister_object(existing_model)

View file

@ -1,62 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.common.type_system import ParamType
from llama_stack.apis.resource import ResourceType
from llama_stack.apis.scoring_functions import (
ListScoringFunctionsResponse,
ScoringFn,
ScoringFnParams,
ScoringFunctions,
)
from llama_stack.distribution.datatypes import (
ScoringFnWithACL,
)
from llama_stack.log import get_logger
from .common import CommonRoutingTableImpl
logger = get_logger(name=__name__, category="core")
class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, ScoringFunctions):
async def list_scoring_functions(self) -> ListScoringFunctionsResponse:
return ListScoringFunctionsResponse(data=await self.get_all_with_type(ResourceType.scoring_function.value))
async def get_scoring_function(self, scoring_fn_id: str) -> ScoringFn:
scoring_fn = await self.get_object_by_identifier("scoring_function", scoring_fn_id)
if scoring_fn is None:
raise ValueError(f"Scoring function '{scoring_fn_id}' not found")
return scoring_fn
async def register_scoring_function(
self,
scoring_fn_id: str,
description: str,
return_type: ParamType,
provider_scoring_fn_id: str | None = None,
provider_id: str | None = None,
params: ScoringFnParams | None = None,
) -> None:
if provider_scoring_fn_id is None:
provider_scoring_fn_id = scoring_fn_id
if provider_id is None:
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
"No provider specified and multiple providers available. Please specify a provider_id."
)
scoring_fn = ScoringFnWithACL(
identifier=scoring_fn_id,
description=description,
return_type=return_type,
provider_resource_id=provider_scoring_fn_id,
provider_id=provider_id,
params=params,
)
scoring_fn.provider_id = provider_id
await self.register_object(scoring_fn)

View file

@ -1,57 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.resource import ResourceType
from llama_stack.apis.shields import ListShieldsResponse, Shield, Shields
from llama_stack.distribution.datatypes import (
ShieldWithACL,
)
from llama_stack.log import get_logger
from .common import CommonRoutingTableImpl
logger = get_logger(name=__name__, category="core")
class ShieldsRoutingTable(CommonRoutingTableImpl, Shields):
async def list_shields(self) -> ListShieldsResponse:
return ListShieldsResponse(data=await self.get_all_with_type(ResourceType.shield.value))
async def get_shield(self, identifier: str) -> Shield:
shield = await self.get_object_by_identifier("shield", identifier)
if shield is None:
raise ValueError(f"Shield '{identifier}' not found")
return shield
async def register_shield(
self,
shield_id: str,
provider_shield_id: str | None = None,
provider_id: str | None = None,
params: dict[str, Any] | None = None,
) -> Shield:
if provider_shield_id is None:
provider_shield_id = shield_id
if provider_id is None:
# If provider_id not specified, use the only provider if it supports this shield type
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
"No provider specified and multiple providers available. Please specify a provider_id."
)
if params is None:
params = {}
shield = ShieldWithACL(
identifier=shield_id,
provider_resource_id=provider_shield_id,
provider_id=provider_id,
params=params,
)
await self.register_object(shield)
return shield

View file

@ -1,132 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.tools import ListToolGroupsResponse, ListToolsResponse, Tool, ToolGroup, ToolGroups
from llama_stack.distribution.datatypes import ToolGroupWithACL
from llama_stack.log import get_logger
from .common import CommonRoutingTableImpl
logger = get_logger(name=__name__, category="core")
def parse_toolgroup_from_toolgroup_name_pair(toolgroup_name_with_maybe_tool_name: str) -> str | None:
# handle the funny case like "builtin::rag/knowledge_search"
parts = toolgroup_name_with_maybe_tool_name.split("/")
if len(parts) == 2:
return parts[0]
else:
return None
class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
toolgroups_to_tools: dict[str, list[Tool]] = {}
tool_to_toolgroup: dict[str, str] = {}
# overridden
def get_provider_impl(self, routing_key: str, provider_id: str | None = None) -> Any:
# we don't index tools in the registry anymore, but only keep a cache of them by toolgroup_id
# TODO: we may want to invalidate the cache (for a given toolgroup_id) every once in a while?
toolgroup_id = parse_toolgroup_from_toolgroup_name_pair(routing_key)
if toolgroup_id:
routing_key = toolgroup_id
if routing_key in self.tool_to_toolgroup:
routing_key = self.tool_to_toolgroup[routing_key]
return super().get_provider_impl(routing_key, provider_id)
async def list_tools(self, toolgroup_id: str | None = None) -> ListToolsResponse:
if toolgroup_id:
if group_id := parse_toolgroup_from_toolgroup_name_pair(toolgroup_id):
toolgroup_id = group_id
toolgroups = [await self.get_tool_group(toolgroup_id)]
else:
toolgroups = await self.get_all_with_type("tool_group")
all_tools = []
for toolgroup in toolgroups:
if toolgroup.identifier not in self.toolgroups_to_tools:
await self._index_tools(toolgroup)
all_tools.extend(self.toolgroups_to_tools[toolgroup.identifier])
return ListToolsResponse(data=all_tools)
async def _index_tools(self, toolgroup: ToolGroup):
provider_impl = super().get_provider_impl(toolgroup.identifier, toolgroup.provider_id)
tooldefs_response = await provider_impl.list_runtime_tools(toolgroup.identifier, toolgroup.mcp_endpoint)
# TODO: kill this Tool vs ToolDef distinction
tooldefs = tooldefs_response.data
tools = []
for t in tooldefs:
tools.append(
Tool(
identifier=t.name,
toolgroup_id=toolgroup.identifier,
description=t.description or "",
parameters=t.parameters or [],
metadata=t.metadata,
provider_id=toolgroup.provider_id,
)
)
self.toolgroups_to_tools[toolgroup.identifier] = tools
for tool in tools:
self.tool_to_toolgroup[tool.identifier] = toolgroup.identifier
async def list_tool_groups(self) -> ListToolGroupsResponse:
return ListToolGroupsResponse(data=await self.get_all_with_type("tool_group"))
async def get_tool_group(self, toolgroup_id: str) -> ToolGroup:
tool_group = await self.get_object_by_identifier("tool_group", toolgroup_id)
if tool_group is None:
raise ValueError(f"Tool group '{toolgroup_id}' not found")
return tool_group
async def get_tool(self, tool_name: str) -> Tool:
if tool_name in self.tool_to_toolgroup:
toolgroup_id = self.tool_to_toolgroup[tool_name]
tools = self.toolgroups_to_tools[toolgroup_id]
for tool in tools:
if tool.identifier == tool_name:
return tool
raise ValueError(f"Tool '{tool_name}' not found")
async def register_tool_group(
self,
toolgroup_id: str,
provider_id: str,
mcp_endpoint: URL | None = None,
args: dict[str, Any] | None = None,
) -> None:
toolgroup = ToolGroupWithACL(
identifier=toolgroup_id,
provider_id=provider_id,
provider_resource_id=toolgroup_id,
mcp_endpoint=mcp_endpoint,
args=args,
)
await self.register_object(toolgroup)
# ideally, indexing of the tools should not be necessary because anyone using
# the tools should first list the tools and then use them. but there are assumptions
# baked in some of the code and tests right now.
if not toolgroup.mcp_endpoint:
await self._index_tools(toolgroup)
return toolgroup
async def unregister_toolgroup(self, toolgroup_id: str) -> None:
tool_group = await self.get_tool_group(toolgroup_id)
if tool_group is None:
raise ValueError(f"Tool group {toolgroup_id} not found")
await self.unregister_object(tool_group)
async def shutdown(self) -> None:
pass

View file

@ -1,74 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import TypeAdapter
from llama_stack.apis.models import ModelType
from llama_stack.apis.resource import ResourceType
from llama_stack.apis.vector_dbs import ListVectorDBsResponse, VectorDB, VectorDBs
from llama_stack.distribution.datatypes import (
VectorDBWithACL,
)
from llama_stack.log import get_logger
from .common import CommonRoutingTableImpl
logger = get_logger(name=__name__, category="core")
class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
async def list_vector_dbs(self) -> ListVectorDBsResponse:
return ListVectorDBsResponse(data=await self.get_all_with_type("vector_db"))
async def get_vector_db(self, vector_db_id: str) -> VectorDB:
vector_db = await self.get_object_by_identifier("vector_db", vector_db_id)
if vector_db is None:
raise ValueError(f"Vector DB '{vector_db_id}' not found")
return vector_db
async def register_vector_db(
self,
vector_db_id: str,
embedding_model: str,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorDB:
if provider_vector_db_id is None:
provider_vector_db_id = vector_db_id
if provider_id is None:
if len(self.impls_by_provider_id) > 0:
provider_id = list(self.impls_by_provider_id.keys())[0]
if len(self.impls_by_provider_id) > 1:
logger.warning(
f"No provider specified and multiple providers available. Arbitrarily selected the first provider {provider_id}."
)
else:
raise ValueError("No provider available. Please configure a vector_io provider.")
model = await self.get_object_by_identifier("model", embedding_model)
if model is None:
raise ValueError(f"Model {embedding_model} not found")
if model.model_type != ModelType.embedding:
raise ValueError(f"Model {embedding_model} is not an embedding model")
if "embedding_dimension" not in model.metadata:
raise ValueError(f"Model {embedding_model} does not have an embedding dimension")
vector_db_data = {
"identifier": vector_db_id,
"type": ResourceType.vector_db.value,
"provider_id": provider_id,
"provider_resource_id": provider_vector_db_id,
"embedding_model": embedding_model,
"embedding_dimension": model.metadata["embedding_dimension"],
}
vector_db = TypeAdapter(VectorDBWithACL).validate_python(vector_db_data)
await self.register_object(vector_db)
return vector_db
async def unregister_vector_db(self, vector_db_id: str) -> None:
existing_vector_db = await self.get_vector_db(vector_db_id)
if existing_vector_db is None:
raise ValueError(f"Vector DB {vector_db_id} not found")
await self.unregister_object(existing_vector_db)

View file

@ -8,8 +8,7 @@ import json
import httpx
from llama_stack.distribution.datatypes import AuthenticationConfig
from llama_stack.distribution.server.auth_providers import create_auth_provider
from llama_stack.distribution.server.auth_providers import AuthProviderConfig, create_auth_provider
from llama_stack.log import get_logger
logger = get_logger(name=__name__, category="auth")
@ -78,7 +77,7 @@ class AuthenticationMiddleware:
access resources that don't have access_attributes defined.
"""
def __init__(self, app, auth_config: AuthenticationConfig):
def __init__(self, app, auth_config: AuthProviderConfig):
self.app = app
self.auth_provider = create_auth_provider(auth_config)
@ -94,7 +93,7 @@ class AuthenticationMiddleware:
# Validate token and get access attributes
try:
validation_result = await self.auth_provider.validate_token(token, scope)
access_attributes = await self.auth_provider.validate_token(token, scope)
except httpx.TimeoutException:
logger.exception("Authentication request timed out")
return await self._send_auth_error(send, "Authentication service timeout")
@ -106,24 +105,17 @@ class AuthenticationMiddleware:
return await self._send_auth_error(send, "Authentication service error")
# Store attributes in request scope for access control
if validation_result.access_attributes:
user_attributes = validation_result.access_attributes.model_dump(exclude_none=True)
if access_attributes:
user_attributes = access_attributes.model_dump(exclude_none=True)
else:
logger.warning("No access attributes, setting namespace to token by default")
user_attributes = {
"roles": [token],
"namespaces": [token],
}
# Store the client ID in the request scope so that downstream middleware (like QuotaMiddleware)
# can identify the requester and enforce per-client rate limits.
scope["authenticated_client_id"] = token
# Store attributes in request scope
scope["user_attributes"] = user_attributes
scope["principal"] = validation_result.principal
logger.debug(
f"Authentication successful: {validation_result.principal} with {len(scope['user_attributes'])} attributes"
)
logger.debug(f"Authentication successful: {len(scope['user_attributes'])} attributes")
return await self.app(scope, receive, send)

View file

@ -4,29 +4,23 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import ssl
import time
import json
from abc import ABC, abstractmethod
from asyncio import Lock
from pathlib import Path
from enum import Enum
from urllib.parse import parse_qs
import httpx
from jose import jwt
from pydantic import BaseModel, Field, field_validator, model_validator
from typing_extensions import Self
from pydantic import BaseModel, Field
from llama_stack.distribution.datatypes import AccessAttributes, AuthenticationConfig, AuthProviderType
from llama_stack.distribution.datatypes import AccessAttributes
from llama_stack.log import get_logger
logger = get_logger(name=__name__, category="auth")
class TokenValidationResult(BaseModel):
principal: str | None = Field(
default=None,
description="The principal (username or persistent identifier) of the authenticated user",
)
class AuthResponse(BaseModel):
"""The format of the authentication response from the auth endpoint."""
access_attributes: AccessAttributes | None = Field(
default=None,
description="""
@ -49,10 +43,6 @@ class TokenValidationResult(BaseModel):
""",
)
class AuthResponse(TokenValidationResult):
"""The format of the authentication response from the auth endpoint."""
message: str | None = Field(
default=None, description="Optional message providing additional context about the authentication result."
)
@ -74,11 +64,25 @@ class AuthRequest(BaseModel):
request: AuthRequestContext = Field(description="Context information about the request being authenticated")
class AuthProviderType(str, Enum):
"""Supported authentication provider types."""
KUBERNETES = "kubernetes"
CUSTOM = "custom"
class AuthProviderConfig(BaseModel):
"""Base configuration for authentication providers."""
provider_type: AuthProviderType = Field(..., description="Type of authentication provider")
config: dict[str, str] = Field(..., description="Provider-specific configuration")
class AuthProvider(ABC):
"""Abstract base class for authentication providers."""
@abstractmethod
async def validate_token(self, token: str, scope: dict | None = None) -> TokenValidationResult:
async def validate_token(self, token: str, scope: dict | None = None) -> AccessAttributes | None:
"""Validate a token and return access attributes."""
pass
@ -88,219 +92,88 @@ class AuthProvider(ABC):
pass
def get_attributes_from_claims(claims: dict[str, str], mapping: dict[str, str]) -> AccessAttributes:
attributes = AccessAttributes()
for claim_key, attribute_key in mapping.items():
if claim_key not in claims or not hasattr(attributes, attribute_key):
continue
claim = claims[claim_key]
if isinstance(claim, list):
values = claim
else:
values = claim.split()
class KubernetesAuthProvider(AuthProvider):
"""Kubernetes authentication provider that validates tokens against the Kubernetes API server."""
current = getattr(attributes, attribute_key)
if current:
current.extend(values)
else:
setattr(attributes, attribute_key, values)
return attributes
def __init__(self, config: dict[str, str]):
self.api_server_url = config["api_server_url"]
self.ca_cert_path = config.get("ca_cert_path")
self._client = None
async def _get_client(self):
"""Get or create a Kubernetes client."""
if self._client is None:
# kubernetes-client has not async support, see:
# https://github.com/kubernetes-client/python/issues/323
from kubernetes import client
from kubernetes.client import ApiClient
class OAuth2JWKSConfig(BaseModel):
# The JWKS URI for collecting public keys
uri: str
key_recheck_period: int = Field(default=3600, description="The period to recheck the JWKS URI for key updates")
# Configure the client
configuration = client.Configuration()
configuration.host = self.api_server_url
if self.ca_cert_path:
configuration.ssl_ca_cert = self.ca_cert_path
configuration.verify_ssl = bool(self.ca_cert_path)
# Create API client
self._client = ApiClient(configuration)
return self._client
class OAuth2IntrospectionConfig(BaseModel):
url: str
client_id: str
client_secret: str
send_secret_in_body: bool = False
class OAuth2TokenAuthProviderConfig(BaseModel):
audience: str = "llama-stack"
verify_tls: bool = True
tls_cafile: Path | None = None
issuer: str | None = Field(default=None, description="The OIDC issuer URL.")
claims_mapping: dict[str, str] = Field(
default_factory=lambda: {
"sub": "roles",
"username": "roles",
"groups": "teams",
"team": "teams",
"project": "projects",
"tenant": "namespaces",
"namespace": "namespaces",
},
)
jwks: OAuth2JWKSConfig | None
introspection: OAuth2IntrospectionConfig | None = None
@classmethod
@field_validator("claims_mapping")
def validate_claims_mapping(cls, v):
for key, value in v.items():
if not value:
raise ValueError(f"claims_mapping value cannot be empty: {key}")
if value not in AccessAttributes.model_fields:
raise ValueError(f"claims_mapping value is not a valid attribute: {value}")
return v
@model_validator(mode="after")
def validate_mode(self) -> Self:
if not self.jwks and not self.introspection:
raise ValueError("One of jwks or introspection must be configured")
if self.jwks and self.introspection:
raise ValueError("At present only one of jwks or introspection should be configured")
return self
class OAuth2TokenAuthProvider(AuthProvider):
"""
JWT token authentication provider that validates a JWT token and extracts access attributes.
This should be the standard authentication provider for most use cases.
"""
def __init__(self, config: OAuth2TokenAuthProviderConfig):
self.config = config
self._jwks_at: float = 0.0
self._jwks: dict[str, str] = {}
self._jwks_lock = Lock()
async def validate_token(self, token: str, scope: dict | None = None) -> TokenValidationResult:
if self.config.jwks:
return await self.validate_jwt_token(token, scope)
if self.config.introspection:
return await self.introspect_token(token, scope)
raise ValueError("One of jwks or introspection must be configured")
async def validate_jwt_token(self, token: str, scope: dict | None = None) -> TokenValidationResult:
"""Validate a token using the JWT token."""
await self._refresh_jwks()
async def validate_token(self, token: str, scope: dict | None = None) -> AccessAttributes | None:
"""Validate a Kubernetes token and return access attributes."""
try:
header = jwt.get_unverified_header(token)
kid = header["kid"]
if kid not in self._jwks:
raise ValueError(f"Unknown key ID: {kid}")
key_data = self._jwks[kid]
algorithm = header.get("alg", "RS256")
claims = jwt.decode(
token,
key_data,
algorithms=[algorithm],
audience=self.config.audience,
issuer=self.config.issuer,
client = await self._get_client()
# Set the token in the client
client.set_default_header("Authorization", f"Bearer {token}")
# Make a request to validate the token
# We use the /api endpoint which requires authentication
from kubernetes.client import CoreV1Api
api = CoreV1Api(client)
api.get_api_resources(_request_timeout=3.0) # Set timeout for this specific request
# If we get here, the token is valid
# Extract user info from the token claims
import base64
# Decode the token (without verification since we've already validated it)
token_parts = token.split(".")
payload = json.loads(base64.b64decode(token_parts[1] + "=" * (-len(token_parts[1]) % 4)))
# Extract user information from the token
username = payload.get("sub", "")
groups = payload.get("groups", [])
return AccessAttributes(
roles=[username], # Use username as a role
teams=groups, # Use Kubernetes groups as teams
)
except Exception as exc:
raise ValueError(f"Invalid JWT token: {token}") from exc
# There are other standard claims, the most relevant of which is `scope`.
# We should incorporate these into the access attributes.
principal = claims["sub"]
access_attributes = get_attributes_from_claims(claims, self.config.claims_mapping)
return TokenValidationResult(
principal=principal,
access_attributes=access_attributes,
)
async def introspect_token(self, token: str, scope: dict | None = None) -> TokenValidationResult:
"""Validate a token using token introspection as defined by RFC 7662."""
form = {
"token": token,
}
if self.config.introspection is None:
raise ValueError("Introspection is not configured")
if self.config.introspection.send_secret_in_body:
form["client_id"] = self.config.introspection.client_id
form["client_secret"] = self.config.introspection.client_secret
auth = None
else:
auth = (self.config.introspection.client_id, self.config.introspection.client_secret)
ssl_ctxt = None
if self.config.tls_cafile:
ssl_ctxt = ssl.create_default_context(cafile=self.config.tls_cafile.as_posix())
try:
async with httpx.AsyncClient(verify=ssl_ctxt) as client:
response = await client.post(
self.config.introspection.url,
data=form,
auth=auth,
timeout=10.0, # Add a reasonable timeout
)
if response.status_code != 200:
logger.warning(f"Token introspection failed with status code: {response.status_code}")
raise ValueError(f"Token introspection failed: {response.status_code}")
fields = response.json()
if not fields["active"]:
raise ValueError("Token not active")
principal = fields["sub"] or fields["username"]
access_attributes = get_attributes_from_claims(fields, self.config.claims_mapping)
return TokenValidationResult(
principal=principal,
access_attributes=access_attributes,
)
except httpx.TimeoutException:
logger.exception("Token introspection request timed out")
raise
except ValueError:
# Re-raise ValueError exceptions to preserve their message
raise
except Exception as e:
logger.exception("Error during token introspection")
raise ValueError("Token introspection error") from e
logger.exception("Failed to validate Kubernetes token")
raise ValueError("Invalid or expired token") from e
async def close(self):
pass
async def _refresh_jwks(self) -> None:
"""
Refresh the JWKS cache.
This is a simple cache that expires after a certain amount of time (defined by `key_recheck_period`).
If the cache is expired, we refresh the JWKS from the JWKS URI.
Notes: for Kubernetes which doesn't fully implement the OIDC protocol:
* It doesn't have user authentication flows
* It doesn't have refresh tokens
"""
async with self._jwks_lock:
if self.config.jwks is None:
raise ValueError("JWKS is not configured")
if time.time() - self._jwks_at > self.config.jwks.key_recheck_period:
verify = self.config.tls_cafile.as_posix() if self.config.tls_cafile else self.config.verify_tls
async with httpx.AsyncClient(verify=verify) as client:
res = await client.get(self.config.jwks.uri, timeout=5)
res.raise_for_status()
jwks_data = res.json()["keys"]
updated = {}
for k in jwks_data:
kid = k["kid"]
# Store the entire key object as it may be needed for different algorithms
updated[kid] = k
self._jwks = updated
self._jwks_at = time.time()
class CustomAuthProviderConfig(BaseModel):
endpoint: str
"""Close the HTTP client."""
if self._client:
self._client.close()
self._client = None
class CustomAuthProvider(AuthProvider):
"""Custom authentication provider that uses an external endpoint."""
def __init__(self, config: CustomAuthProviderConfig):
self.config = config
def __init__(self, config: dict[str, str]):
self.endpoint = config["endpoint"]
self._client = None
async def validate_token(self, token: str, scope: dict | None = None) -> TokenValidationResult:
async def validate_token(self, token: str, scope: dict | None = None) -> AccessAttributes | None:
"""Validate a token using the custom authentication endpoint."""
if not self.endpoint:
raise ValueError("Authentication endpoint not configured")
if scope is None:
scope = {}
@ -329,7 +202,7 @@ class CustomAuthProvider(AuthProvider):
try:
async with httpx.AsyncClient() as client:
response = await client.post(
self.config.endpoint,
self.endpoint,
json=auth_request.model_dump(),
timeout=10.0, # Add a reasonable timeout
)
@ -341,7 +214,19 @@ class CustomAuthProvider(AuthProvider):
try:
response_data = response.json()
auth_response = AuthResponse(**response_data)
return auth_response
# Store attributes in request scope for access control
if auth_response.access_attributes:
return auth_response.access_attributes
else:
logger.warning("No access attributes, setting namespace to api_key by default")
user_attributes = {
"namespaces": [token],
}
scope["user_attributes"] = user_attributes
logger.debug(f"Authentication successful: {len(user_attributes)} attributes")
return auth_response.access_attributes
except Exception as e:
logger.exception("Error parsing authentication response")
raise ValueError("Invalid authentication response format") from e
@ -363,14 +248,14 @@ class CustomAuthProvider(AuthProvider):
self._client = None
def create_auth_provider(config: AuthenticationConfig) -> AuthProvider:
def create_auth_provider(config: AuthProviderConfig) -> AuthProvider:
"""Factory function to create the appropriate auth provider."""
provider_type = config.provider_type.lower()
if provider_type == "custom":
return CustomAuthProvider(CustomAuthProviderConfig.model_validate(config.config))
elif provider_type == "oauth2_token":
return OAuth2TokenAuthProvider(OAuth2TokenAuthProviderConfig.model_validate(config.config))
if provider_type == "kubernetes":
return KubernetesAuthProvider(config.config)
elif provider_type == "custom":
return CustomAuthProvider(config.config)
else:
supported_providers = ", ".join([t.value for t in AuthProviderType])
raise ValueError(f"Unsupported auth provider type: {provider_type}. Supported types are: {supported_providers}")

View file

@ -6,23 +6,20 @@
import inspect
import re
from collections.abc import Callable
from typing import Any
from aiohttp import hdrs
from starlette.routing import Route
from pydantic import BaseModel
from llama_stack.apis.tools import RAGToolRuntime, SpecialToolGroup
from llama_stack.apis.version import LLAMA_STACK_API_VERSION
from llama_stack.distribution.resolver import api_protocol_map
from llama_stack.providers.datatypes import Api
EndpointFunc = Callable[..., Any]
PathParams = dict[str, str]
RouteInfo = tuple[EndpointFunc, str]
PathImpl = dict[str, RouteInfo]
RouteImpls = dict[str, PathImpl]
RouteMatch = tuple[EndpointFunc, PathParams, str]
class ApiEndpoint(BaseModel):
route: str
method: str
name: str
descriptive_name: str | None = None
def toolgroup_protocol_map():
@ -31,13 +28,13 @@ def toolgroup_protocol_map():
}
def get_all_api_routes() -> dict[Api, list[Route]]:
def get_all_api_endpoints() -> dict[Api, list[ApiEndpoint]]:
apis = {}
protocols = api_protocol_map()
toolgroup_protocols = toolgroup_protocol_map()
for api, protocol in protocols.items():
routes = []
endpoints = []
protocol_methods = inspect.getmembers(protocol, predicate=inspect.isfunction)
# HACK ALERT
@ -54,28 +51,26 @@ def get_all_api_routes() -> dict[Api, list[Route]]:
if not hasattr(method, "__webmethod__"):
continue
# The __webmethod__ attribute is dynamically added by the @webmethod decorator
# mypy doesn't know about this dynamic attribute, so we ignore the attr-defined error
webmethod = method.__webmethod__ # type: ignore[attr-defined]
path = f"/{LLAMA_STACK_API_VERSION}/{webmethod.route.lstrip('/')}"
if webmethod.method == hdrs.METH_GET:
http_method = hdrs.METH_GET
elif webmethod.method == hdrs.METH_DELETE:
http_method = hdrs.METH_DELETE
webmethod = method.__webmethod__
route = f"/{LLAMA_STACK_API_VERSION}/{webmethod.route.lstrip('/')}"
if webmethod.method == "GET":
method = "get"
elif webmethod.method == "DELETE":
method = "delete"
else:
http_method = hdrs.METH_POST
routes.append(
Route(path=path, methods=[http_method], name=name, endpoint=None)
) # setting endpoint to None since don't use a Router object
method = "post"
endpoints.append(
ApiEndpoint(route=route, method=method, name=name, descriptive_name=webmethod.descriptive_name)
)
apis[api] = routes
apis[api] = endpoints
return apis
def initialize_route_impls(impls: dict[Api, Any]) -> RouteImpls:
routes = get_all_api_routes()
route_impls: RouteImpls = {}
def initialize_endpoint_impls(impls):
endpoints = get_all_api_endpoints()
endpoint_impls = {}
def _convert_path_to_regex(path: str) -> str:
# Convert {param} to named capture groups
@ -88,34 +83,29 @@ def initialize_route_impls(impls: dict[Api, Any]) -> RouteImpls:
return f"^{pattern}$"
for api, api_routes in routes.items():
for api, api_endpoints in endpoints.items():
if api not in impls:
continue
for route in api_routes:
for endpoint in api_endpoints:
impl = impls[api]
func = getattr(impl, route.name)
# Get the first (and typically only) method from the set, filtering out HEAD
available_methods = [m for m in route.methods if m != "HEAD"]
if not available_methods:
continue # Skip if only HEAD method is available
method = available_methods[0].lower()
if method not in route_impls:
route_impls[method] = {}
route_impls[method][_convert_path_to_regex(route.path)] = (
func = getattr(impl, endpoint.name)
if endpoint.method not in endpoint_impls:
endpoint_impls[endpoint.method] = {}
endpoint_impls[endpoint.method][_convert_path_to_regex(endpoint.route)] = (
func,
route.path,
endpoint.descriptive_name or endpoint.route,
)
return route_impls
return endpoint_impls
def find_matching_route(method: str, path: str, route_impls: RouteImpls) -> RouteMatch:
def find_matching_endpoint(method, path, endpoint_impls):
"""Find the matching endpoint implementation for a given method and path.
Args:
method: HTTP method (GET, POST, etc.)
path: URL path to match against
route_impls: A dictionary of endpoint implementations
endpoint_impls: A dictionary of endpoint implementations
Returns:
A tuple of (endpoint_function, path_params, descriptive_name)
@ -123,7 +113,7 @@ def find_matching_route(method: str, path: str, route_impls: RouteImpls) -> Rout
Raises:
ValueError: If no matching endpoint is found
"""
impls = route_impls.get(method.lower())
impls = endpoint_impls.get(method.lower())
if not impls:
raise ValueError(f"No endpoint found for {path}")

View file

@ -1,110 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import time
from datetime import datetime, timedelta, timezone
from starlette.types import ASGIApp, Receive, Scope, Send
from llama_stack.log import get_logger
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
from llama_stack.providers.utils.kvstore.kvstore import kvstore_impl
logger = get_logger(name=__name__, category="quota")
class QuotaMiddleware:
"""
ASGI middleware that enforces separate quotas for authenticated and anonymous clients
within a configurable time window.
- For authenticated requests, it reads the client ID from the
`Authorization: Bearer <client_id>` header.
- For anonymous requests, it falls back to the IP address of the client.
Requests are counted in a KV store (e.g., SQLite), and HTTP 429 is returned
once a client exceeds its quota.
"""
def __init__(
self,
app: ASGIApp,
kv_config: KVStoreConfig,
anonymous_max_requests: int,
authenticated_max_requests: int,
window_seconds: int = 86400,
):
self.app = app
self.kv_config = kv_config
self.kv: KVStore | None = None
self.anonymous_max_requests = anonymous_max_requests
self.authenticated_max_requests = authenticated_max_requests
self.window_seconds = window_seconds
if isinstance(self.kv_config, SqliteKVStoreConfig):
logger.warning(
"QuotaMiddleware: Using SQLite backend. Expiry/TTL is not enforced; cleanup is manual. "
f"window_seconds={self.window_seconds}"
)
async def _get_kv(self) -> KVStore:
if self.kv is None:
self.kv = await kvstore_impl(self.kv_config)
return self.kv
async def __call__(self, scope: Scope, receive: Receive, send: Send):
if scope["type"] == "http":
# pick key & limit based on auth
auth_id = scope.get("authenticated_client_id")
if auth_id:
key_id = auth_id
limit = self.authenticated_max_requests
else:
# fallback to IP
client = scope.get("client")
key_id = client[0] if client else "anonymous"
limit = self.anonymous_max_requests
current_window = int(time.time() // self.window_seconds)
key = f"quota:{key_id}:{current_window}"
try:
kv = await self._get_kv()
prev = await kv.get(key) or "0"
count = int(prev) + 1
if int(prev) == 0:
# Set with expiration datetime when it is the first request in the window.
expiration = datetime.now(timezone.utc) + timedelta(seconds=self.window_seconds)
await kv.set(key, str(count), expiration=expiration)
else:
await kv.set(key, str(count))
except Exception:
logger.exception("Failed to access KV store for quota")
return await self._send_error(send, 500, "Quota service error")
if count > limit:
logger.warning(
"Quota exceeded for client %s: %d/%d",
key_id,
count,
limit,
)
return await self._send_error(send, 429, "Quota exceeded")
return await self.app(scope, receive, send)
async def _send_error(self, send: Send, status: int, message: str):
await send(
{
"type": "http.response.start",
"status": status,
"headers": [[b"content-type", b"application/json"]],
}
)
body = json.dumps({"error": {"message": message}}).encode()
await send({"type": "http.response.body", "body": body})

View file

@ -6,7 +6,6 @@
import argparse
import asyncio
import functools
import inspect
import json
import os
@ -14,7 +13,6 @@ import ssl
import sys
import traceback
import warnings
from collections.abc import Callable
from contextlib import asynccontextmanager
from importlib.metadata import version as parse_version
from pathlib import Path
@ -22,26 +20,23 @@ from typing import Annotated, Any
import rich.pretty
import yaml
from aiohttp import hdrs
from fastapi import Body, FastAPI, HTTPException, Request
from fastapi import Path as FastapiPath
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, StreamingResponse
from openai import BadRequestError
from pydantic import BaseModel, ValidationError
from llama_stack.distribution.datatypes import AuthenticationRequiredError, LoggingConfig, StackRunConfig
from llama_stack.distribution.datatypes import LoggingConfig, StackRunConfig
from llama_stack.distribution.distribution import builtin_automatically_routed_apis
from llama_stack.distribution.request_headers import (
PROVIDER_DATA_VAR,
request_provider_data_context,
)
from llama_stack.distribution.resolver import InvalidProviderError
from llama_stack.distribution.server.routes import (
find_matching_route,
get_all_api_routes,
initialize_route_impls,
from llama_stack.distribution.server.endpoints import (
find_matching_endpoint,
initialize_endpoint_impls,
)
from llama_stack.distribution.stack import (
construct_stack,
@ -64,7 +59,7 @@ from llama_stack.providers.utils.telemetry.tracing import (
)
from .auth import AuthenticationMiddleware
from .quota import QuotaMiddleware
from .endpoints import get_all_api_endpoints
REPO_ROOT = Path(__file__).parent.parent.parent.parent
@ -125,8 +120,6 @@ def translate_exception(exc: Exception) -> HTTPException | RequestValidationErro
return HTTPException(status_code=504, detail=f"Operation timed out: {str(exc)}")
elif isinstance(exc, NotImplementedError):
return HTTPException(status_code=501, detail=f"Not implemented: {str(exc)}")
elif isinstance(exc, AuthenticationRequiredError):
return HTTPException(status_code=401, detail=f"Authentication required: {str(exc)}")
else:
return HTTPException(
status_code=500,
@ -212,9 +205,8 @@ async def log_request_pre_validation(request: Request):
logger.warning(f"Could not read or log request body for {request.method} {request.url.path}: {e}")
def create_dynamic_typed_route(func: Any, method: str, route: str) -> Callable:
@functools.wraps(func)
async def route_handler(request: Request, **kwargs):
def create_dynamic_typed_route(func: Any, method: str, route: str):
async def endpoint(request: Request, **kwargs):
# Get auth attributes from the request scope
user_attributes = request.scope.get("user_attributes", {})
@ -254,9 +246,9 @@ def create_dynamic_typed_route(func: Any, method: str, route: str) -> Callable:
for param in new_params[1:]
]
route_handler.__signature__ = sig.replace(parameters=new_params)
endpoint.__signature__ = sig.replace(parameters=new_params)
return route_handler
return endpoint
class TracingMiddleware:
@ -278,28 +270,17 @@ class TracingMiddleware:
logger.debug(f"Bypassing custom routing for FastAPI built-in path: {path}")
return await self.app(scope, receive, send)
if not hasattr(self, "route_impls"):
self.route_impls = initialize_route_impls(self.impls)
if not hasattr(self, "endpoint_impls"):
self.endpoint_impls = initialize_endpoint_impls(self.impls)
try:
_, _, trace_path = find_matching_route(scope.get("method", hdrs.METH_GET), path, self.route_impls)
_, _, trace_path = find_matching_endpoint(scope.get("method", "GET"), path, self.endpoint_impls)
except ValueError:
# If no matching endpoint is found, pass through to FastAPI
logger.debug(f"No matching route found for path: {path}, falling back to FastAPI")
logger.debug(f"No matching endpoint found for path: {path}, falling back to FastAPI")
return await self.app(scope, receive, send)
trace_attributes = {"__location__": "server", "raw_path": path}
# Extract W3C trace context headers and store as trace attributes
headers = dict(scope.get("headers", []))
traceparent = headers.get(b"traceparent", b"").decode()
if traceparent:
trace_attributes["traceparent"] = traceparent
tracestate = headers.get(b"tracestate", b"").decode()
if tracestate:
trace_attributes["tracestate"] = tracestate
trace_context = await start_trace(trace_path, trace_attributes)
trace_context = await start_trace(trace_path, {"__location__": "server", "raw_path": path})
async def send_with_trace_id(message):
if message["type"] == "http.response.start":
@ -389,6 +370,14 @@ def main(args: argparse.Namespace | None = None):
if args is None:
args = parser.parse_args()
# Check for deprecated argument usage
if "--yaml-config" in sys.argv:
warnings.warn(
"The '--yaml-config' argument is deprecated and will be removed in a future version. Use '--config' instead.",
DeprecationWarning,
stacklevel=2,
)
log_line = ""
if args.config:
# if the user provided a config file, use it, even if template was specified
@ -402,7 +391,7 @@ def main(args: argparse.Namespace | None = None):
raise ValueError(f"Template {args.template} does not exist")
log_line = f"Using template {args.template} config file: {config_file}"
else:
raise ValueError("Either --config or --template must be provided")
raise ValueError("Either --yaml-config or --template must be provided")
logger_config = None
with open(config_file) as fp:
@ -442,46 +431,6 @@ def main(args: argparse.Namespace | None = None):
if config.server.auth:
logger.info(f"Enabling authentication with provider: {config.server.auth.provider_type.value}")
app.add_middleware(AuthenticationMiddleware, auth_config=config.server.auth)
else:
if config.server.quota:
quota = config.server.quota
logger.warning(
"Configured authenticated_max_requests (%d) but no auth is enabled; "
"falling back to anonymous_max_requests (%d) for all the requests",
quota.authenticated_max_requests,
quota.anonymous_max_requests,
)
if config.server.quota:
logger.info("Enabling quota middleware for authenticated and anonymous clients")
quota = config.server.quota
anonymous_max_requests = quota.anonymous_max_requests
# if auth is disabled, use the anonymous max requests
authenticated_max_requests = quota.authenticated_max_requests if config.server.auth else anonymous_max_requests
kv_config = quota.kvstore
window_map = {"day": 86400}
window_seconds = window_map[quota.period.value]
app.add_middleware(
QuotaMiddleware,
kv_config=kv_config,
anonymous_max_requests=anonymous_max_requests,
authenticated_max_requests=authenticated_max_requests,
window_seconds=window_seconds,
)
# --- CORS middleware for local development ---
# TODO: move to reverse proxy
ui_port = os.environ.get("LLAMA_STACK_UI_PORT", 8322)
app.add_middleware(
CORSMiddleware,
allow_origins=[f"http://localhost:{ui_port}"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
try:
impls = asyncio.run(construct_stack(config))
@ -494,7 +443,7 @@ def main(args: argparse.Namespace | None = None):
else:
setup_logger(TelemetryAdapter(TelemetryConfig(), {}))
all_routes = get_all_api_routes()
all_endpoints = get_all_api_endpoints()
if config.apis:
apis_to_serve = set(config.apis)
@ -512,29 +461,24 @@ def main(args: argparse.Namespace | None = None):
for api_str in apis_to_serve:
api = Api(api_str)
routes = all_routes[api]
endpoints = all_endpoints[api]
impl = impls[api]
for route in routes:
if not hasattr(impl, route.name):
for endpoint in endpoints:
if not hasattr(impl, endpoint.name):
# ideally this should be a typing violation already
raise ValueError(f"Could not find method {route.name} on {impl}!")
raise ValueError(f"Could not find method {endpoint.name} on {impl}!!")
impl_method = getattr(impl, route.name)
# Filter out HEAD method since it's automatically handled by FastAPI for GET routes
available_methods = [m for m in route.methods if m != "HEAD"]
if not available_methods:
raise ValueError(f"No methods found for {route.name} on {impl}")
method = available_methods[0]
logger.debug(f"{method} {route.path}")
impl_method = getattr(impl, endpoint.name)
logger.debug(f"{endpoint.method.upper()} {endpoint.route}")
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning, module="pydantic._internal._fields")
getattr(app, method.lower())(route.path, response_model=None)(
getattr(app, endpoint.method)(endpoint.route, response_model=None)(
create_dynamic_typed_route(
impl_method,
method.lower(),
route.path,
endpoint.method,
endpoint.route,
)
)

View file

@ -54,7 +54,7 @@ other_args=""
# Process remaining arguments
while [[ $# -gt 0 ]]; do
case "$1" in
--config)
--config|--yaml-config)
if [[ -n "$2" ]]; then
yaml_config="$2"
shift 2
@ -121,7 +121,7 @@ if [[ "$env_type" == "venv" || "$env_type" == "conda" ]]; then
set -x
if [ -n "$yaml_config" ]; then
yaml_config_arg="--config $yaml_config"
yaml_config_arg="--yaml-config $yaml_config"
else
yaml_config_arg=""
fi
@ -181,9 +181,9 @@ elif [[ "$env_type" == "container" ]]; then
# Add yaml config if provided, otherwise use default
if [ -n "$yaml_config" ]; then
cmd="$cmd -v $yaml_config:/app/run.yaml --config /app/run.yaml"
cmd="$cmd -v $yaml_config:/app/run.yaml --yaml-config /app/run.yaml"
else
cmd="$cmd --config /app/run.yaml"
cmd="$cmd --yaml-config /app/run.yaml"
fi
# Add any other args

View file

@ -36,7 +36,7 @@ class DistributionRegistry(Protocol):
REGISTER_PREFIX = "distributions:registry"
KEY_VERSION = "v9"
KEY_VERSION = "v8"
KEY_FORMAT = f"{REGISTER_PREFIX}:{KEY_VERSION}::" + "{type}:{identifier}"

View file

@ -5,8 +5,7 @@ FROM python:3.12-slim
WORKDIR /app
COPY . /app/
RUN /usr/local/bin/python -m pip install --upgrade pip && \
/usr/local/bin/pip3 install -r requirements.txt && \
/usr/local/bin/pip3 install -r llama_stack/distribution/ui/requirements.txt
/usr/local/bin/pip3 install -r requirements.txt
EXPOSE 8501
ENTRYPOINT ["streamlit", "run", "llama_stack/distribution/ui/app.py", "--server.port=8501", "--server.address=0.0.0.0"]
ENTRYPOINT ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]

View file

@ -48,6 +48,3 @@ uv run --with ".[ui]" streamlit run llama_stack/distribution/ui/app.py
| TOGETHER_API_KEY | API key for Together provider | (empty string) |
| SAMBANOVA_API_KEY | API key for SambaNova provider | (empty string) |
| OPENAI_API_KEY | API key for OpenAI provider | (empty string) |
| KEYCLOAK_URL | URL for keycloak authentication | (empty string) |
| KEYCLOAK_REALM | Keycloak realm | default |
| KEYCLOAK_CLIENT_ID | Client ID for keycloak auth | (empty string) |

View file

@ -50,42 +50,6 @@ def main():
)
pg.run()
def main2():
from dataclasses import asdict
st.subheader(f"Welcome {keycloak.user_info['preferred_username']}!")
st.write(f"Here is your user information:")
st.write(asdict(keycloak))
def get_access_token() -> str|None:
return st.session_state.get('access_token')
if __name__ == "__main__":
from streamlit_keycloak import login
import os
keycloak_url = os.environ.get("KEYCLOAK_URL")
keycloak_realm = os.environ.get("KEYCLOAK_REALM", "default")
keycloak_client_id = os.environ.get("KEYCLOAK_CLIENT_ID")
if keycloak_url and keycloak_client_id:
keycloak = login(
url=keycloak_url,
realm=keycloak_realm,
client_id=keycloak_client_id,
custom_labels={
"labelButton": "Sign in to kvant",
"labelLogin": "Please sign in to your kvant account.",
"errorNoPopup": "Unable to open the authentication popup. Allow popups and refresh the page to proceed.",
"errorPopupClosed": "Authentication popup was closed manually.",
"errorFatal": "Unable to connect to Keycloak using the current configuration."
},
auto_refresh=True,
)
if keycloak.authenticated:
st.session_state['access_token'] = keycloak.access_token
main()
# TBD - add other authentications
else:
main()
main()

View file

@ -7,13 +7,11 @@
import os
from llama_stack_client import LlamaStackClient
from llama_stack.distribution.ui.app import get_access_token
class LlamaStackApi:
def __init__(self):
self.client = LlamaStackClient(
api_key=get_access_token(),
base_url=os.environ.get("LLAMA_STACK_ENDPOINT", "http://localhost:8321"),
provider_data={
"fireworks_api_key": os.environ.get("FIREWORKS_API_KEY", ""),
@ -30,3 +28,5 @@ class LlamaStackApi:
scoring_params = {fn_id: None for fn_id in scoring_function_ids}
return self.client.scoring.score(input_rows=[row], scoring_functions=scoring_params)
llama_stack_api = LlamaStackApi()

Some files were not shown because too many files have changed in this diff Show more