forked from phoenix-oss/llama-stack-mirror
Compare commits
No commits in common. "kvant" and "main" have entirely different histories.
44 changed files with 2349 additions and 3859 deletions
1
.github/workflows/Dockerfile
vendored
1
.github/workflows/Dockerfile
vendored
|
@ -1 +0,0 @@
|
|||
FROM localhost:5000/distribution-kvant:dev
|
73
.github/workflows/ci-playground.yaml
vendored
73
.github/workflows/ci-playground.yaml
vendored
|
@ -1,73 +0,0 @@
|
|||
name: Build and Push playground container
|
||||
run-name: Build and Push playground container
|
||||
on:
|
||||
workflow_dispatch:
|
||||
#schedule:
|
||||
# - cron: "0 10 * * *"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- kvant
|
||||
tags:
|
||||
- 'v*'
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
- kvant
|
||||
env:
|
||||
IMAGE: git.kvant.cloud/${{github.repository}}-playground
|
||||
jobs:
|
||||
build-playground:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Set current time
|
||||
uses: https://github.com/gerred/actions/current-time@master
|
||||
id: current_time
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Login to git.kvant.cloud registry
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: git.kvant.cloud
|
||||
username: ${{ vars.ORG_PACKAGE_WRITER_USERNAME }}
|
||||
password: ${{ secrets.ORG_PACKAGE_WRITER_TOKEN }}
|
||||
|
||||
- name: Docker meta
|
||||
id: meta
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
# list of Docker images to use as base name for tags
|
||||
images: |
|
||||
${{env.IMAGE}}
|
||||
# generate Docker tags based on the following events/attributes
|
||||
tags: |
|
||||
type=schedule
|
||||
type=ref,event=branch
|
||||
type=ref,event=pr
|
||||
type=ref,event=tag
|
||||
type=semver,pattern={{version}}
|
||||
|
||||
- name: Build and push to gitea registry
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
push: ${{ github.event_name != 'pull_request' }}
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
context: .
|
||||
file: llama_stack/distribution/ui/Containerfile
|
||||
provenance: mode=max
|
||||
sbom: true
|
||||
build-args: |
|
||||
BUILD_DATE=${{ steps.current_time.outputs.time }}
|
||||
cache-from: |
|
||||
type=registry,ref=${{ env.IMAGE }}:buildcache
|
||||
type=registry,ref=${{ env.IMAGE }}:${{ github.ref_name }}
|
||||
type=registry,ref=${{ env.IMAGE }}:main
|
||||
cache-to: type=registry,ref=${{ env.IMAGE }}:buildcache,mode=max,image-manifest=true
|
98
.github/workflows/ci.yaml
vendored
98
.github/workflows/ci.yaml
vendored
|
@ -1,98 +0,0 @@
|
|||
name: Build and Push container
|
||||
run-name: Build and Push container
|
||||
on:
|
||||
workflow_dispatch:
|
||||
#schedule:
|
||||
# - cron: "0 10 * * *"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- kvant
|
||||
tags:
|
||||
- 'v*'
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
- kvant
|
||||
env:
|
||||
IMAGE: git.kvant.cloud/${{github.repository}}
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
services:
|
||||
registry:
|
||||
image: registry:2
|
||||
ports:
|
||||
- 5000:5000
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Set current time
|
||||
uses: https://github.com/gerred/actions/current-time@master
|
||||
id: current_time
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
with:
|
||||
driver-opts: network=host
|
||||
|
||||
- name: Login to git.kvant.cloud registry
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: git.kvant.cloud
|
||||
username: ${{ vars.ORG_PACKAGE_WRITER_USERNAME }}
|
||||
password: ${{ secrets.ORG_PACKAGE_WRITER_TOKEN }}
|
||||
|
||||
- name: Docker meta
|
||||
id: meta
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
# list of Docker images to use as base name for tags
|
||||
images: |
|
||||
${{env.IMAGE}}
|
||||
# generate Docker tags based on the following events/attributes
|
||||
tags: |
|
||||
type=schedule
|
||||
type=ref,event=branch
|
||||
type=ref,event=pr
|
||||
type=ref,event=tag
|
||||
type=semver,pattern={{version}}
|
||||
|
||||
- name: Install uv
|
||||
uses: https://github.com/astral-sh/setup-uv@v5
|
||||
with:
|
||||
# Install a specific version of uv.
|
||||
version: "0.7.8"
|
||||
|
||||
- name: Build
|
||||
env:
|
||||
USE_COPY_NOT_MOUNT: true
|
||||
LLAMA_STACK_DIR: .
|
||||
run: |
|
||||
uvx --from . llama stack build --template kvant --image-type container
|
||||
|
||||
# docker tag distribution-kvant:dev ${{env.IMAGE}}:kvant
|
||||
# docker push ${{env.IMAGE}}:kvant
|
||||
|
||||
docker tag distribution-kvant:dev localhost:5000/distribution-kvant:dev
|
||||
docker push localhost:5000/distribution-kvant:dev
|
||||
|
||||
- name: Build and push to gitea registry
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
push: ${{ github.event_name != 'pull_request' }}
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
context: .github/workflows
|
||||
provenance: mode=max
|
||||
sbom: true
|
||||
build-args: |
|
||||
BUILD_DATE=${{ steps.current_time.outputs.time }}
|
||||
cache-from: |
|
||||
type=registry,ref=${{ env.IMAGE }}:buildcache
|
||||
type=registry,ref=${{ env.IMAGE }}:${{ github.ref_name }}
|
||||
type=registry,ref=${{ env.IMAGE }}:main
|
||||
cache-to: type=registry,ref=${{ env.IMAGE }}:buildcache,mode=max,image-manifest=true
|
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -24,4 +24,3 @@ venv/
|
|||
pytest-report.xml
|
||||
.coverage
|
||||
.python-version
|
||||
data
|
||||
|
|
|
@ -1,6 +0,0 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
export USE_COPY_NOT_MOUNT=true
|
||||
export LLAMA_STACK_DIR=.
|
||||
|
||||
uvx --from . llama stack build --template kvant --image-type container --image-name kvant
|
|
@ -1,17 +0,0 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
export LLAMA_STACK_PORT=8321
|
||||
# VLLM_API_TOKEN= env file
|
||||
# KEYCLOAK_CLIENT_SECRET= env file
|
||||
|
||||
|
||||
docker run -it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v $(pwd)/data:/root/.llama \
|
||||
--mount type=bind,source="$(pwd)"/llama_stack/templates/kvant/run.yaml,target=/root/.llama/config.yaml,readonly \
|
||||
--entrypoint python \
|
||||
--env-file ./.env \
|
||||
distribution-kvant:dev \
|
||||
-m llama_stack.distribution.server.server --config /root/.llama/config.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
|
|
@ -5,8 +5,7 @@ FROM python:3.12-slim
|
|||
WORKDIR /app
|
||||
COPY . /app/
|
||||
RUN /usr/local/bin/python -m pip install --upgrade pip && \
|
||||
/usr/local/bin/pip3 install -r requirements.txt && \
|
||||
/usr/local/bin/pip3 install -r llama_stack/distribution/ui/requirements.txt
|
||||
/usr/local/bin/pip3 install -r requirements.txt
|
||||
EXPOSE 8501
|
||||
|
||||
ENTRYPOINT ["streamlit", "run", "llama_stack/distribution/ui/app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
||||
ENTRYPOINT ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
||||
|
|
|
@ -48,6 +48,3 @@ uv run --with ".[ui]" streamlit run llama_stack/distribution/ui/app.py
|
|||
| TOGETHER_API_KEY | API key for Together provider | (empty string) |
|
||||
| SAMBANOVA_API_KEY | API key for SambaNova provider | (empty string) |
|
||||
| OPENAI_API_KEY | API key for OpenAI provider | (empty string) |
|
||||
| KEYCLOAK_URL | URL for keycloak authentication | (empty string) |
|
||||
| KEYCLOAK_REALM | Keycloak realm | default |
|
||||
| KEYCLOAK_CLIENT_ID | Client ID for keycloak auth | (empty string) |
|
|
@ -50,42 +50,6 @@ def main():
|
|||
)
|
||||
pg.run()
|
||||
|
||||
def main2():
|
||||
from dataclasses import asdict
|
||||
st.subheader(f"Welcome {keycloak.user_info['preferred_username']}!")
|
||||
st.write(f"Here is your user information:")
|
||||
st.write(asdict(keycloak))
|
||||
|
||||
def get_access_token() -> str|None:
|
||||
return st.session_state.get('access_token')
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
from streamlit_keycloak import login
|
||||
import os
|
||||
|
||||
keycloak_url = os.environ.get("KEYCLOAK_URL")
|
||||
keycloak_realm = os.environ.get("KEYCLOAK_REALM", "default")
|
||||
keycloak_client_id = os.environ.get("KEYCLOAK_CLIENT_ID")
|
||||
|
||||
if keycloak_url and keycloak_client_id:
|
||||
keycloak = login(
|
||||
url=keycloak_url,
|
||||
realm=keycloak_realm,
|
||||
client_id=keycloak_client_id,
|
||||
custom_labels={
|
||||
"labelButton": "Sign in to kvant",
|
||||
"labelLogin": "Please sign in to your kvant account.",
|
||||
"errorNoPopup": "Unable to open the authentication popup. Allow popups and refresh the page to proceed.",
|
||||
"errorPopupClosed": "Authentication popup was closed manually.",
|
||||
"errorFatal": "Unable to connect to Keycloak using the current configuration."
|
||||
},
|
||||
auto_refresh=True,
|
||||
)
|
||||
|
||||
if keycloak.authenticated:
|
||||
st.session_state['access_token'] = keycloak.access_token
|
||||
main()
|
||||
# TBD - add other authentications
|
||||
else:
|
||||
main()
|
||||
|
|
|
@ -7,13 +7,11 @@
|
|||
import os
|
||||
|
||||
from llama_stack_client import LlamaStackClient
|
||||
from llama_stack.distribution.ui.app import get_access_token
|
||||
|
||||
|
||||
class LlamaStackApi:
|
||||
def __init__(self):
|
||||
self.client = LlamaStackClient(
|
||||
api_key=get_access_token(),
|
||||
base_url=os.environ.get("LLAMA_STACK_ENDPOINT", "http://localhost:8321"),
|
||||
provider_data={
|
||||
"fireworks_api_key": os.environ.get("FIREWORKS_API_KEY", ""),
|
||||
|
@ -30,3 +28,5 @@ class LlamaStackApi:
|
|||
scoring_params = {fn_id: None for fn_id in scoring_function_ids}
|
||||
return self.client.scoring.score(input_rows=[row], scoring_functions=scoring_params)
|
||||
|
||||
|
||||
llama_stack_api = LlamaStackApi()
|
||||
|
|
|
@ -6,13 +6,13 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
|
||||
|
||||
def datasets():
|
||||
st.header("Datasets")
|
||||
|
||||
datasets_info = {d.identifier: d.to_dict() for d in LlamaStackApi().client.datasets.list()}
|
||||
datasets_info = {d.identifier: d.to_dict() for d in llama_stack_api.client.datasets.list()}
|
||||
if len(datasets_info) > 0:
|
||||
selected_dataset = st.selectbox("Select a dataset", list(datasets_info.keys()))
|
||||
st.json(datasets_info[selected_dataset], expanded=True)
|
||||
|
|
|
@ -6,14 +6,14 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
|
||||
|
||||
def benchmarks():
|
||||
# Benchmarks Section
|
||||
st.header("Benchmarks")
|
||||
|
||||
benchmarks_info = {d.identifier: d.to_dict() for d in LlamaStackApi().client.benchmarks.list()}
|
||||
benchmarks_info = {d.identifier: d.to_dict() for d in llama_stack_api.client.benchmarks.list()}
|
||||
|
||||
if len(benchmarks_info) > 0:
|
||||
selected_benchmark = st.selectbox("Select an eval task", list(benchmarks_info.keys()), key="benchmark_inspect")
|
||||
|
|
|
@ -6,13 +6,13 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
|
||||
|
||||
def models():
|
||||
# Models Section
|
||||
st.header("Models")
|
||||
models_info = {m.identifier: m.to_dict() for m in LlamaStackApi().client.models.list()}
|
||||
models_info = {m.identifier: m.to_dict() for m in llama_stack_api.client.models.list()}
|
||||
|
||||
selected_model = st.selectbox("Select a model", list(models_info.keys()))
|
||||
st.json(models_info[selected_model])
|
||||
|
|
|
@ -6,12 +6,12 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
|
||||
|
||||
def providers():
|
||||
st.header("🔍 API Providers")
|
||||
apis_providers_lst = LlamaStackApi().client.providers.list()
|
||||
apis_providers_lst = llama_stack_api.client.providers.list()
|
||||
api_to_providers = {}
|
||||
for api_provider in apis_providers_lst:
|
||||
if api_provider.api in api_to_providers:
|
||||
|
|
|
@ -6,13 +6,13 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
|
||||
|
||||
def scoring_functions():
|
||||
st.header("Scoring Functions")
|
||||
|
||||
scoring_functions_info = {s.identifier: s.to_dict() for s in LlamaStackApi().client.scoring_functions.list()}
|
||||
scoring_functions_info = {s.identifier: s.to_dict() for s in llama_stack_api.client.scoring_functions.list()}
|
||||
|
||||
selected_scoring_function = st.selectbox("Select a scoring function", list(scoring_functions_info.keys()))
|
||||
st.json(scoring_functions_info[selected_scoring_function], expanded=True)
|
||||
|
|
|
@ -6,14 +6,14 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
|
||||
|
||||
def shields():
|
||||
# Shields Section
|
||||
st.header("Shields")
|
||||
|
||||
shields_info = {s.identifier: s.to_dict() for s in LlamaStackApi().client.shields.list()}
|
||||
shields_info = {s.identifier: s.to_dict() for s in llama_stack_api.client.shields.list()}
|
||||
|
||||
selected_shield = st.selectbox("Select a shield", list(shields_info.keys()))
|
||||
st.json(shields_info[selected_shield])
|
||||
|
|
|
@ -6,12 +6,12 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
|
||||
|
||||
def vector_dbs():
|
||||
st.header("Vector Databases")
|
||||
vector_dbs_info = {v.identifier: v.to_dict() for v in LlamaStackApi().client.vector_dbs.list()}
|
||||
vector_dbs_info = {v.identifier: v.to_dict() for v in llama_stack_api.client.vector_dbs.list()}
|
||||
|
||||
if len(vector_dbs_info) > 0:
|
||||
selected_vector_db = st.selectbox("Select a vector database", list(vector_dbs_info.keys()))
|
||||
|
|
|
@ -9,7 +9,7 @@ import json
|
|||
import pandas as pd
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
from llama_stack.distribution.ui.modules.utils import process_dataset
|
||||
|
||||
|
||||
|
@ -39,7 +39,7 @@ def application_evaluation_page():
|
|||
|
||||
# Select Scoring Functions to Run Evaluation On
|
||||
st.subheader("Select Scoring Functions")
|
||||
scoring_functions = LlamaStackApi().client.scoring_functions.list()
|
||||
scoring_functions = llama_stack_api.client.scoring_functions.list()
|
||||
scoring_functions = {sf.identifier: sf for sf in scoring_functions}
|
||||
scoring_functions_names = list(scoring_functions.keys())
|
||||
selected_scoring_functions = st.multiselect(
|
||||
|
@ -48,7 +48,7 @@ def application_evaluation_page():
|
|||
help="Choose one or more scoring functions.",
|
||||
)
|
||||
|
||||
available_models = LlamaStackApi().client.models.list()
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
available_models = [m.identifier for m in available_models]
|
||||
|
||||
scoring_params = {}
|
||||
|
@ -108,7 +108,7 @@ def application_evaluation_page():
|
|||
progress_bar.progress(progress, text=progress_text)
|
||||
|
||||
# Run evaluation for current row
|
||||
score_res = LlamaStackApi().run_scoring(
|
||||
score_res = llama_stack_api.run_scoring(
|
||||
r,
|
||||
scoring_function_ids=selected_scoring_functions,
|
||||
scoring_params=scoring_params,
|
||||
|
|
|
@ -9,13 +9,13 @@ import json
|
|||
import pandas as pd
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
|
||||
|
||||
def select_benchmark_1():
|
||||
# Select Benchmarks
|
||||
st.subheader("1. Choose An Eval Task")
|
||||
benchmarks = LlamaStackApi().client.benchmarks.list()
|
||||
benchmarks = llama_stack_api.client.benchmarks.list()
|
||||
benchmarks = {et.identifier: et for et in benchmarks}
|
||||
benchmarks_names = list(benchmarks.keys())
|
||||
selected_benchmark = st.selectbox(
|
||||
|
@ -47,7 +47,7 @@ def define_eval_candidate_2():
|
|||
# Define Eval Candidate
|
||||
candidate_type = st.radio("Candidate Type", ["model", "agent"])
|
||||
|
||||
available_models = LlamaStackApi().client.models.list()
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
available_models = [model.identifier for model in available_models]
|
||||
selected_model = st.selectbox(
|
||||
"Choose a model",
|
||||
|
@ -167,7 +167,7 @@ def run_evaluation_3():
|
|||
eval_candidate = st.session_state["eval_candidate"]
|
||||
|
||||
dataset_id = benchmarks[selected_benchmark].dataset_id
|
||||
rows = LlamaStackApi().client.datasets.iterrows(
|
||||
rows = llama_stack_api.client.datasets.iterrows(
|
||||
dataset_id=dataset_id,
|
||||
)
|
||||
total_rows = len(rows.data)
|
||||
|
@ -208,7 +208,7 @@ def run_evaluation_3():
|
|||
progress = i / len(rows)
|
||||
progress_bar.progress(progress, text=progress_text)
|
||||
# Run evaluation for current row
|
||||
eval_res = LlamaStackApi().client.eval.evaluate_rows(
|
||||
eval_res = llama_stack_api.client.eval.evaluate_rows(
|
||||
benchmark_id=selected_benchmark,
|
||||
input_rows=[r],
|
||||
scoring_functions=benchmarks[selected_benchmark].scoring_functions,
|
||||
|
|
|
@ -6,12 +6,12 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
|
||||
# Sidebar configurations
|
||||
with st.sidebar:
|
||||
st.header("Configuration")
|
||||
available_models = LlamaStackApi().client.models.list()
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
available_models = [model.identifier for model in available_models if model.model_type == "llm"]
|
||||
selected_model = st.selectbox(
|
||||
"Choose a model",
|
||||
|
@ -103,7 +103,7 @@ if prompt := st.chat_input("Example: What is Llama Stack?"):
|
|||
else:
|
||||
strategy = {"type": "greedy"}
|
||||
|
||||
response = LlamaStackApi().client.inference.chat_completion(
|
||||
response = llama_stack_api.client.inference.chat_completion(
|
||||
messages=[
|
||||
{"role": "system", "content": system_prompt},
|
||||
{"role": "user", "content": prompt},
|
||||
|
|
|
@ -10,7 +10,7 @@ import streamlit as st
|
|||
from llama_stack_client import Agent, AgentEventLogger, RAGDocument
|
||||
|
||||
from llama_stack.apis.common.content_types import ToolCallDelta
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
from llama_stack.distribution.ui.modules.utils import data_url_from_file
|
||||
|
||||
|
||||
|
@ -57,14 +57,14 @@ def rag_chat_page():
|
|||
for i, uploaded_file in enumerate(uploaded_files)
|
||||
]
|
||||
|
||||
providers = LlamaStackApi().client.providers.list()
|
||||
providers = llama_stack_api.client.providers.list()
|
||||
vector_io_provider = None
|
||||
|
||||
for x in providers:
|
||||
if x.api == "vector_io":
|
||||
vector_io_provider = x.provider_id
|
||||
|
||||
LlamaStackApi().client.vector_dbs.register(
|
||||
llama_stack_api.client.vector_dbs.register(
|
||||
vector_db_id=vector_db_name, # Use the user-provided name
|
||||
embedding_dimension=384,
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
|
@ -72,7 +72,7 @@ def rag_chat_page():
|
|||
)
|
||||
|
||||
# insert documents using the custom vector db name
|
||||
LlamaStackApi().client.tool_runtime.rag_tool.insert(
|
||||
llama_stack_api.client.tool_runtime.rag_tool.insert(
|
||||
vector_db_id=vector_db_name, # Use the user-provided name
|
||||
documents=documents,
|
||||
chunk_size_in_tokens=512,
|
||||
|
@ -93,7 +93,7 @@ def rag_chat_page():
|
|||
)
|
||||
|
||||
# select memory banks
|
||||
vector_dbs = LlamaStackApi().client.vector_dbs.list()
|
||||
vector_dbs = llama_stack_api.client.vector_dbs.list()
|
||||
vector_dbs = [vector_db.identifier for vector_db in vector_dbs]
|
||||
selected_vector_dbs = st.multiselect(
|
||||
label="Select Document Collections to use in RAG queries",
|
||||
|
@ -103,7 +103,7 @@ def rag_chat_page():
|
|||
)
|
||||
|
||||
st.subheader("Inference Parameters", divider=True)
|
||||
available_models = LlamaStackApi().client.models.list()
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
available_models = [model.identifier for model in available_models if model.model_type == "llm"]
|
||||
selected_model = st.selectbox(
|
||||
label="Choose a model",
|
||||
|
@ -167,7 +167,7 @@ def rag_chat_page():
|
|||
@st.cache_resource
|
||||
def create_agent():
|
||||
return Agent(
|
||||
LlamaStackApi().client,
|
||||
llama_stack_api.client,
|
||||
model=selected_model,
|
||||
instructions=system_prompt,
|
||||
sampling_params={
|
||||
|
@ -232,7 +232,7 @@ def rag_chat_page():
|
|||
st.session_state.messages.append({"role": "system", "content": system_prompt})
|
||||
|
||||
# Query the vector DB
|
||||
rag_response = LlamaStackApi().client.tool_runtime.rag_tool.query(
|
||||
rag_response = llama_stack_api.client.tool_runtime.rag_tool.query(
|
||||
content=prompt, vector_db_ids=list(selected_vector_dbs)
|
||||
)
|
||||
prompt_context = rag_response.content
|
||||
|
@ -251,7 +251,7 @@ def rag_chat_page():
|
|||
|
||||
# Run inference directly
|
||||
st.session_state.messages.append({"role": "user", "content": extended_prompt})
|
||||
response = LlamaStackApi().client.inference.chat_completion(
|
||||
response = llama_stack_api.client.inference.chat_completion(
|
||||
messages=st.session_state.messages,
|
||||
model_id=selected_model,
|
||||
sampling_params={
|
||||
|
|
|
@ -13,7 +13,7 @@ from llama_stack_client import Agent
|
|||
from llama_stack_client.lib.agents.react.agent import ReActAgent
|
||||
from llama_stack_client.lib.agents.react.tool_parser import ReActOutput
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
|
||||
|
||||
class AgentType(enum.Enum):
|
||||
|
@ -24,7 +24,7 @@ class AgentType(enum.Enum):
|
|||
def tool_chat_page():
|
||||
st.title("🛠 Tools")
|
||||
|
||||
client = LlamaStackApi().client
|
||||
client = llama_stack_api.client
|
||||
models = client.models.list()
|
||||
model_list = [model.identifier for model in models if model.api_model_type == "llm"]
|
||||
|
||||
|
@ -55,7 +55,7 @@ def tool_chat_page():
|
|||
)
|
||||
|
||||
if "builtin::rag" in toolgroup_selection:
|
||||
vector_dbs = LlamaStackApi().client.vector_dbs.list() or []
|
||||
vector_dbs = llama_stack_api.client.vector_dbs.list() or []
|
||||
if not vector_dbs:
|
||||
st.info("No vector databases available for selection.")
|
||||
vector_dbs = [vector_db.identifier for vector_db in vector_dbs]
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
llama-stack-client>=0.2.9
|
||||
llama-stack>=0.2.1
|
||||
llama-stack-client>=0.2.1
|
||||
pandas
|
||||
streamlit
|
||||
streamlit-option-menu
|
||||
streamlit-keycloak
|
||||
|
|
|
@ -1,904 +0,0 @@
|
|||
{
|
||||
"bedrock": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"boto3",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"cerebras": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"cerebras_cloud_sdk",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"ci-tests": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"fireworks-ai",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"sqlite-vec",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"dell": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"fireworks": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"fireworks-ai",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"groq": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"litellm",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"hf-endpoint": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"hf-serverless": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"kvant": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"llama_api": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"litellm",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"sqlite-vec",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"meta-reference-gpu": [
|
||||
"accelerate",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fairscale",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fbgemm-gpu-genai==1.1.2",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"lm-format-enforcer",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentence-transformers",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"torch",
|
||||
"torchao==0.8.0",
|
||||
"torchvision",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"zmq"
|
||||
],
|
||||
"nvidia": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn"
|
||||
],
|
||||
"ollama": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"ollama",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"peft",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"torch",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"trl",
|
||||
"uvicorn"
|
||||
],
|
||||
"open-benchmark": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"litellm",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"sqlite-vec",
|
||||
"together",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"passthrough": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"remote-vllm": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"sambanova": [
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"litellm",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"starter": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"fireworks-ai",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"litellm",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"sqlite-vec",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"tgi": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"huggingface_hub",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"together": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"together",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"verification": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"litellm",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"sqlite-vec",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"vllm-gpu": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"vllm",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"watsonx": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"ibm_watson_machine_learning",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"sqlalchemy[asyncio]",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
]
|
||||
}
|
|
@ -1,7 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .kvant import get_distribution_template # noqa: F401
|
|
@ -1,35 +0,0 @@
|
|||
version: '2'
|
||||
distribution_spec:
|
||||
description: distribution for kvant cloud
|
||||
providers:
|
||||
inference:
|
||||
- remote::vllm
|
||||
- inline::sentence-transformers
|
||||
vector_io:
|
||||
- inline::faiss
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
eval:
|
||||
- inline::meta-reference
|
||||
datasetio:
|
||||
- remote::huggingface
|
||||
- inline::localfs
|
||||
scoring:
|
||||
- inline::basic
|
||||
- inline::llm-as-judge
|
||||
- inline::braintrust
|
||||
tool_runtime:
|
||||
- remote::brave-search
|
||||
- remote::tavily-search
|
||||
- remote::wolfram-alpha
|
||||
- inline::rag-runtime
|
||||
- remote::model-context-protocol
|
||||
image_type: conda
|
||||
additional_pip_packages:
|
||||
- sqlalchemy[asyncio]
|
|
@ -1,136 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from llama_stack.apis.models.models import ModelType
|
||||
from llama_stack.distribution.datatypes import (
|
||||
ModelInput,
|
||||
Provider,
|
||||
ShieldInput,
|
||||
ToolGroupInput,
|
||||
)
|
||||
from llama_stack.providers.inline.inference.sentence_transformers import (
|
||||
SentenceTransformersInferenceConfig,
|
||||
)
|
||||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
from llama_stack.providers.remote.inference.passthrough.config import (
|
||||
PassthroughImplConfig,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.model_registry import ProviderModelEntry
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
providers = {
|
||||
"inference": ["remote::openai", "inline::sentence-transformers"],
|
||||
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
"eval": ["inline::meta-reference"],
|
||||
"datasetio": ["remote::huggingface", "inline::localfs"],
|
||||
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
||||
"tool_runtime": [
|
||||
"remote::brave-search",
|
||||
"remote::tavily-search",
|
||||
"remote::wolfram-alpha",
|
||||
"inline::rag-runtime",
|
||||
"remote::model-context-protocol",
|
||||
],
|
||||
}
|
||||
|
||||
name = "kvant"
|
||||
|
||||
inference_provider = Provider(
|
||||
provider_id="openai",
|
||||
provider_type="remote::openai",
|
||||
config=PassthroughImplConfig.sample_run_config(),
|
||||
)
|
||||
embedding_provider = Provider(
|
||||
provider_id="sentence-transformers",
|
||||
provider_type="inline::sentence-transformers",
|
||||
config=SentenceTransformersInferenceConfig.sample_run_config(),
|
||||
)
|
||||
vector_io_provider = Provider(
|
||||
provider_id="faiss",
|
||||
provider_type="inline::faiss",
|
||||
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||
)
|
||||
|
||||
default_models = [
|
||||
ModelInput(
|
||||
metadata={},
|
||||
model_id="inference-llama4-maverick",
|
||||
provider_id="openai",
|
||||
provider_model_id="inference-llama4-maverick",
|
||||
model_type=ModelType.llm,
|
||||
),
|
||||
]
|
||||
|
||||
embedding_model = ModelInput(
|
||||
model_id="all-MiniLM-L6-v2",
|
||||
provider_id="sentence-transformers",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": 384,
|
||||
},
|
||||
)
|
||||
default_tool_groups = [
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::websearch",
|
||||
provider_id="tavily-search",
|
||||
),
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::wolfram_alpha",
|
||||
provider_id="wolfram-alpha",
|
||||
),
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::rag",
|
||||
provider_id="rag-runtime",
|
||||
),
|
||||
]
|
||||
|
||||
return DistributionTemplate(
|
||||
name=name,
|
||||
distro_type="self_hosted",
|
||||
description="Use Passthrough hosted llama-stack endpoint for LLM inference",
|
||||
container_image=None,
|
||||
providers=providers,
|
||||
available_models_by_provider={
|
||||
"openai": [
|
||||
ProviderModelEntry(
|
||||
provider_model_id="inference-llama4-maverick",
|
||||
model_type=ModelType.llm,
|
||||
),
|
||||
],
|
||||
},
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider, embedding_provider],
|
||||
"vector_io": [vector_io_provider],
|
||||
},
|
||||
default_models=default_models + [embedding_model],
|
||||
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
|
||||
default_tool_groups=default_tool_groups,
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"OPENAI_API_KEY": (
|
||||
"",
|
||||
"kvant maas API Key",
|
||||
),
|
||||
"OPENAI_BASE_URL": (
|
||||
"https://maas.kvant.cloud",
|
||||
"kvant maas URL",
|
||||
),
|
||||
},
|
||||
)
|
|
@ -1,170 +0,0 @@
|
|||
version: '2'
|
||||
image_name: kvant
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: kvant
|
||||
provider_type: remote::vllm
|
||||
config:
|
||||
url: ${env.VLLM_URL:https://maas.ai-2.kvant.cloud/v1}
|
||||
max_tokens: ${env.VLLM_MAX_TOKENS:400000}
|
||||
api_token: ${env.VLLM_API_TOKEN:fake}
|
||||
tls_verify: ${env.VLLM_TLS_VERIFY:true}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
config: {}
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/kvant}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/kvant}/agents_store.db
|
||||
responses_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/kvant}/responses_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: ${env.OTEL_SERVICE_NAME:}
|
||||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/kvant}/trace_store.db
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/kvant}/meta_reference_eval.db
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/kvant}/huggingface_datasetio.db
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/kvant}/localfs_datasetio.db
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
config: {}
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
config: {}
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: wolfram-alpha
|
||||
provider_type: remote::wolfram-alpha
|
||||
config:
|
||||
api_key: ${env.WOLFRAM_ALPHA_API_KEY:}
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
config: {}
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
config: {}
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/kvant}/registry.db
|
||||
inference_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/kvant}/inference_store.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: Llama-4-Maverick-17B-128E-Instruct-FP8
|
||||
provider_id: kvant
|
||||
provider_model_id: inference-llama4-maverick
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 1024
|
||||
context_length: 8192
|
||||
model_id: inference-bge-m3
|
||||
provider_id: kvant
|
||||
model_type: embedding
|
||||
- metadata:
|
||||
embedding_dimension: 384
|
||||
model_id: all-MiniLM-L6-v2
|
||||
provider_id: sentence-transformers
|
||||
model_type: embedding
|
||||
shields:
|
||||
- shield_id: meta-llama/Llama-Guard-3-8B
|
||||
vector_dbs: []
|
||||
# - vector_db_id: test-bge
|
||||
# embedding_model: inference-bge-m3
|
||||
# embedding_dimension: 1024
|
||||
# provider_id: faiss
|
||||
# - vector_db_id: test-MiniLM-L6-v2
|
||||
# embedding_model: all-MiniLM-L6-v2
|
||||
# embedding_dimension: 384
|
||||
# provider_id: faiss
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::wolfram_alpha
|
||||
provider_id: wolfram-alpha
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
||||
auth:
|
||||
provider_type: "oauth2_token"
|
||||
config:
|
||||
jwks:
|
||||
introspection:
|
||||
url: ${env.KEYCLOAK_INSTROSPECT:https://iam.phoenix-systems.ch/realms/kvant/protocol/openid-connect/token/introspect}
|
||||
client_id: ${env.KEYCLOAK_CLIENT_ID:llama-stack}
|
||||
client_secret: ${env.KEYCLOAK_CLIENT_SECRET}
|
||||
claims_mapping:
|
||||
sub: projects
|
||||
scope: roles
|
||||
#groups: teams
|
||||
customer/id: teams
|
||||
aud: namespaces
|
|
@ -1,7 +0,0 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
export KEYCLOAK_URL="https://iam.phoenix-systems.ch"
|
||||
export KEYCLOAK_REALM="kvant"
|
||||
export KEYCLOAK_CLIENT_ID="llama-stack-playground"
|
||||
|
||||
uv run --with ".[ui]" streamlit run llama_stack/distribution/ui/app.py
|
|
@ -49,7 +49,6 @@ ui = [
|
|||
"pandas",
|
||||
"llama-stack-client>=0.2.9",
|
||||
"streamlit-option-menu",
|
||||
"streamlit-keycloak",
|
||||
]
|
||||
|
||||
[dependency-groups]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue