Compare commits

...

10 commits

Author SHA1 Message Date
b174effe05
fix security update
All checks were successful
Build and Push playground container / build-playground (push) Successful in 1m57s
Build and Push container / build (push) Successful in 4m33s
2025-06-03 20:07:06 +02:00
8943b283e9
fix install
All checks were successful
Build and Push playground container / build-playground (push) Successful in 2m2s
Build and Push container / build (push) Successful in 4m7s
2025-06-02 03:02:25 +02:00
08905fc937
add requirements
Some checks failed
Build and Push playground container / build-playground (push) Failing after 35s
Build and Push container / build (push) Has been cancelled
2025-06-02 03:01:15 +02:00
8b5b1c937b
update ui command
All checks were successful
Build and Push playground container / build-playground (push) Successful in 1m47s
Build and Push container / build (push) Successful in 4m9s
2025-06-02 02:54:55 +02:00
205fc2cbd1
include all
All checks were successful
Build and Push playground container / build-playground (push) Successful in 1m42s
Build and Push container / build (push) Successful in 4m6s
2025-06-02 02:49:54 +02:00
4a122bbaca
use own code 2025-06-02 02:49:45 +02:00
a77b554bcf
update requiements
All checks were successful
Build and Push playground container / build-playground (push) Successful in 2m7s
Build and Push container / build (push) Successful in 4m32s
2025-06-02 02:34:19 +02:00
51816af52e
use env file
All checks were successful
Build and Push playground container / build-playground (push) Successful in 1m6s
Build and Push container / build (push) Successful in 4m22s
2025-06-02 01:39:17 +02:00
96003b55de
use auth for kvant
All checks were successful
Build and Push playground container / build-playground (push) Successful in 1m6s
Build and Push container / build (push) Successful in 4m27s
2025-06-02 01:23:33 +02:00
3bde47e562
add keycloak auth to playground ui
All checks were successful
Build and Push playground container / build-playground (push) Successful in 2m0s
Build and Push container / build (push) Successful in 4m11s
2025-06-01 22:23:49 +02:00
23 changed files with 2428 additions and 2363 deletions

View file

@ -60,7 +60,7 @@ jobs:
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
context: llama_stack/distribution/ui
context: .
file: llama_stack/distribution/ui/Containerfile
provenance: mode=max
sbom: true

View file

@ -1,25 +1,17 @@
#!/usr/bin/env bash
export INFERENCE_MODEL="inference-llama4-maverick"
export EMBEDDING_MODEL="inference-bge-m3"
export EMBEDDING_DIMENSION="1024"
export LLAMA_STACK_PORT=8321
export OPENAI_BASE_URL=https://maas.ai-2.kvant.cloud/v1
export OPENAI_API_KEY=sk-ZqAWqBKFXjb6y3tVej2AaA
export VLLM_MAX_TOKENS=125000
# VLLM_API_TOKEN= env file
# KEYCLOAK_CLIENT_SECRET= env file
docker run -it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v $(pwd)/data:/root/.llama \
--mount type=bind,source="$(pwd)"/llama_stack/templates/kvant/run.yaml,target=/root/.llama/config.yaml,readonly \
--entrypoint python \
--env-file ./.env \
distribution-kvant:dev \
-m llama_stack.distribution.server.server --config /root/.llama/config.yaml \
--port $LLAMA_STACK_PORT \
--env VLLM_URL=$OPENAI_BASE_URL \
--env VLLM_API_TOKEN=$OPENAI_API_KEY \
--env PASSTHROUGH_URL=$OPENAI_BASE_URL \
--env PASSTHROUGH_API_KEY=$OPENAI_API_KEY \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env EMBEDDING_MODEL=$EMBEDDING_MODEL \
--env EMBEDDING_DIMENSION=$EMBEDDING_DIMENSION \

View file

@ -5,7 +5,8 @@ FROM python:3.12-slim
WORKDIR /app
COPY . /app/
RUN /usr/local/bin/python -m pip install --upgrade pip && \
/usr/local/bin/pip3 install -r requirements.txt
/usr/local/bin/pip3 install -r requirements.txt && \
/usr/local/bin/pip3 install -r llama_stack/distribution/ui/requirements.txt
EXPOSE 8501
ENTRYPOINT ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
ENTRYPOINT ["streamlit", "run", "llama_stack/distribution/ui/app.py", "--server.port=8501", "--server.address=0.0.0.0"]

View file

@ -48,3 +48,6 @@ uv run --with ".[ui]" streamlit run llama_stack/distribution/ui/app.py
| TOGETHER_API_KEY | API key for Together provider | (empty string) |
| SAMBANOVA_API_KEY | API key for SambaNova provider | (empty string) |
| OPENAI_API_KEY | API key for OpenAI provider | (empty string) |
| KEYCLOAK_URL | URL for keycloak authentication | (empty string) |
| KEYCLOAK_REALM | Keycloak realm | default |
| KEYCLOAK_CLIENT_ID | Client ID for keycloak auth | (empty string) |

View file

@ -50,6 +50,42 @@ def main():
)
pg.run()
def main2():
from dataclasses import asdict
st.subheader(f"Welcome {keycloak.user_info['preferred_username']}!")
st.write(f"Here is your user information:")
st.write(asdict(keycloak))
def get_access_token() -> str|None:
return st.session_state.get('access_token')
if __name__ == "__main__":
main()
from streamlit_keycloak import login
import os
keycloak_url = os.environ.get("KEYCLOAK_URL")
keycloak_realm = os.environ.get("KEYCLOAK_REALM", "default")
keycloak_client_id = os.environ.get("KEYCLOAK_CLIENT_ID")
if keycloak_url and keycloak_client_id:
keycloak = login(
url=keycloak_url,
realm=keycloak_realm,
client_id=keycloak_client_id,
custom_labels={
"labelButton": "Sign in to kvant",
"labelLogin": "Please sign in to your kvant account.",
"errorNoPopup": "Unable to open the authentication popup. Allow popups and refresh the page to proceed.",
"errorPopupClosed": "Authentication popup was closed manually.",
"errorFatal": "Unable to connect to Keycloak using the current configuration."
},
auto_refresh=True,
)
if keycloak.authenticated:
st.session_state['access_token'] = keycloak.access_token
main()
# TBD - add other authentications
else:
main()

View file

@ -7,11 +7,13 @@
import os
from llama_stack_client import LlamaStackClient
from llama_stack.distribution.ui.app import get_access_token
class LlamaStackApi:
def __init__(self):
self.client = LlamaStackClient(
api_key=get_access_token(),
base_url=os.environ.get("LLAMA_STACK_ENDPOINT", "http://localhost:8321"),
provider_data={
"fireworks_api_key": os.environ.get("FIREWORKS_API_KEY", ""),
@ -28,5 +30,3 @@ class LlamaStackApi:
scoring_params = {fn_id: None for fn_id in scoring_function_ids}
return self.client.scoring.score(input_rows=[row], scoring_functions=scoring_params)
llama_stack_api = LlamaStackApi()

View file

@ -6,13 +6,13 @@
import streamlit as st
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import LlamaStackApi
def datasets():
st.header("Datasets")
datasets_info = {d.identifier: d.to_dict() for d in llama_stack_api.client.datasets.list()}
datasets_info = {d.identifier: d.to_dict() for d in LlamaStackApi().client.datasets.list()}
if len(datasets_info) > 0:
selected_dataset = st.selectbox("Select a dataset", list(datasets_info.keys()))
st.json(datasets_info[selected_dataset], expanded=True)

View file

@ -6,14 +6,14 @@
import streamlit as st
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import LlamaStackApi
def benchmarks():
# Benchmarks Section
st.header("Benchmarks")
benchmarks_info = {d.identifier: d.to_dict() for d in llama_stack_api.client.benchmarks.list()}
benchmarks_info = {d.identifier: d.to_dict() for d in LlamaStackApi().client.benchmarks.list()}
if len(benchmarks_info) > 0:
selected_benchmark = st.selectbox("Select an eval task", list(benchmarks_info.keys()), key="benchmark_inspect")

View file

@ -6,13 +6,13 @@
import streamlit as st
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import LlamaStackApi
def models():
# Models Section
st.header("Models")
models_info = {m.identifier: m.to_dict() for m in llama_stack_api.client.models.list()}
models_info = {m.identifier: m.to_dict() for m in LlamaStackApi().client.models.list()}
selected_model = st.selectbox("Select a model", list(models_info.keys()))
st.json(models_info[selected_model])

View file

@ -6,12 +6,12 @@
import streamlit as st
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import LlamaStackApi
def providers():
st.header("🔍 API Providers")
apis_providers_lst = llama_stack_api.client.providers.list()
apis_providers_lst = LlamaStackApi().client.providers.list()
api_to_providers = {}
for api_provider in apis_providers_lst:
if api_provider.api in api_to_providers:

View file

@ -6,13 +6,13 @@
import streamlit as st
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import LlamaStackApi
def scoring_functions():
st.header("Scoring Functions")
scoring_functions_info = {s.identifier: s.to_dict() for s in llama_stack_api.client.scoring_functions.list()}
scoring_functions_info = {s.identifier: s.to_dict() for s in LlamaStackApi().client.scoring_functions.list()}
selected_scoring_function = st.selectbox("Select a scoring function", list(scoring_functions_info.keys()))
st.json(scoring_functions_info[selected_scoring_function], expanded=True)

View file

@ -6,14 +6,14 @@
import streamlit as st
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import LlamaStackApi
def shields():
# Shields Section
st.header("Shields")
shields_info = {s.identifier: s.to_dict() for s in llama_stack_api.client.shields.list()}
shields_info = {s.identifier: s.to_dict() for s in LlamaStackApi().client.shields.list()}
selected_shield = st.selectbox("Select a shield", list(shields_info.keys()))
st.json(shields_info[selected_shield])

View file

@ -6,12 +6,12 @@
import streamlit as st
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import LlamaStackApi
def vector_dbs():
st.header("Vector Databases")
vector_dbs_info = {v.identifier: v.to_dict() for v in llama_stack_api.client.vector_dbs.list()}
vector_dbs_info = {v.identifier: v.to_dict() for v in LlamaStackApi().client.vector_dbs.list()}
if len(vector_dbs_info) > 0:
selected_vector_db = st.selectbox("Select a vector database", list(vector_dbs_info.keys()))

View file

@ -9,7 +9,7 @@ import json
import pandas as pd
import streamlit as st
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import LlamaStackApi
from llama_stack.distribution.ui.modules.utils import process_dataset
@ -39,7 +39,7 @@ def application_evaluation_page():
# Select Scoring Functions to Run Evaluation On
st.subheader("Select Scoring Functions")
scoring_functions = llama_stack_api.client.scoring_functions.list()
scoring_functions = LlamaStackApi().client.scoring_functions.list()
scoring_functions = {sf.identifier: sf for sf in scoring_functions}
scoring_functions_names = list(scoring_functions.keys())
selected_scoring_functions = st.multiselect(
@ -48,7 +48,7 @@ def application_evaluation_page():
help="Choose one or more scoring functions.",
)
available_models = llama_stack_api.client.models.list()
available_models = LlamaStackApi().client.models.list()
available_models = [m.identifier for m in available_models]
scoring_params = {}
@ -108,7 +108,7 @@ def application_evaluation_page():
progress_bar.progress(progress, text=progress_text)
# Run evaluation for current row
score_res = llama_stack_api.run_scoring(
score_res = LlamaStackApi().run_scoring(
r,
scoring_function_ids=selected_scoring_functions,
scoring_params=scoring_params,

View file

@ -9,13 +9,13 @@ import json
import pandas as pd
import streamlit as st
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import LlamaStackApi
def select_benchmark_1():
# Select Benchmarks
st.subheader("1. Choose An Eval Task")
benchmarks = llama_stack_api.client.benchmarks.list()
benchmarks = LlamaStackApi().client.benchmarks.list()
benchmarks = {et.identifier: et for et in benchmarks}
benchmarks_names = list(benchmarks.keys())
selected_benchmark = st.selectbox(
@ -47,7 +47,7 @@ def define_eval_candidate_2():
# Define Eval Candidate
candidate_type = st.radio("Candidate Type", ["model", "agent"])
available_models = llama_stack_api.client.models.list()
available_models = LlamaStackApi().client.models.list()
available_models = [model.identifier for model in available_models]
selected_model = st.selectbox(
"Choose a model",
@ -167,7 +167,7 @@ def run_evaluation_3():
eval_candidate = st.session_state["eval_candidate"]
dataset_id = benchmarks[selected_benchmark].dataset_id
rows = llama_stack_api.client.datasets.iterrows(
rows = LlamaStackApi().client.datasets.iterrows(
dataset_id=dataset_id,
)
total_rows = len(rows.data)
@ -208,7 +208,7 @@ def run_evaluation_3():
progress = i / len(rows)
progress_bar.progress(progress, text=progress_text)
# Run evaluation for current row
eval_res = llama_stack_api.client.eval.evaluate_rows(
eval_res = LlamaStackApi().client.eval.evaluate_rows(
benchmark_id=selected_benchmark,
input_rows=[r],
scoring_functions=benchmarks[selected_benchmark].scoring_functions,

View file

@ -6,12 +6,12 @@
import streamlit as st
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import LlamaStackApi
# Sidebar configurations
with st.sidebar:
st.header("Configuration")
available_models = llama_stack_api.client.models.list()
available_models = LlamaStackApi().client.models.list()
available_models = [model.identifier for model in available_models if model.model_type == "llm"]
selected_model = st.selectbox(
"Choose a model",
@ -103,7 +103,7 @@ if prompt := st.chat_input("Example: What is Llama Stack?"):
else:
strategy = {"type": "greedy"}
response = llama_stack_api.client.inference.chat_completion(
response = LlamaStackApi().client.inference.chat_completion(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},

View file

@ -10,7 +10,7 @@ import streamlit as st
from llama_stack_client import Agent, AgentEventLogger, RAGDocument
from llama_stack.apis.common.content_types import ToolCallDelta
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import LlamaStackApi
from llama_stack.distribution.ui.modules.utils import data_url_from_file
@ -57,14 +57,14 @@ def rag_chat_page():
for i, uploaded_file in enumerate(uploaded_files)
]
providers = llama_stack_api.client.providers.list()
providers = LlamaStackApi().client.providers.list()
vector_io_provider = None
for x in providers:
if x.api == "vector_io":
vector_io_provider = x.provider_id
llama_stack_api.client.vector_dbs.register(
LlamaStackApi().client.vector_dbs.register(
vector_db_id=vector_db_name, # Use the user-provided name
embedding_dimension=384,
embedding_model="all-MiniLM-L6-v2",
@ -72,7 +72,7 @@ def rag_chat_page():
)
# insert documents using the custom vector db name
llama_stack_api.client.tool_runtime.rag_tool.insert(
LlamaStackApi().client.tool_runtime.rag_tool.insert(
vector_db_id=vector_db_name, # Use the user-provided name
documents=documents,
chunk_size_in_tokens=512,
@ -93,7 +93,7 @@ def rag_chat_page():
)
# select memory banks
vector_dbs = llama_stack_api.client.vector_dbs.list()
vector_dbs = LlamaStackApi().client.vector_dbs.list()
vector_dbs = [vector_db.identifier for vector_db in vector_dbs]
selected_vector_dbs = st.multiselect(
label="Select Document Collections to use in RAG queries",
@ -103,7 +103,7 @@ def rag_chat_page():
)
st.subheader("Inference Parameters", divider=True)
available_models = llama_stack_api.client.models.list()
available_models = LlamaStackApi().client.models.list()
available_models = [model.identifier for model in available_models if model.model_type == "llm"]
selected_model = st.selectbox(
label="Choose a model",
@ -167,7 +167,7 @@ def rag_chat_page():
@st.cache_resource
def create_agent():
return Agent(
llama_stack_api.client,
LlamaStackApi().client,
model=selected_model,
instructions=system_prompt,
sampling_params={
@ -232,7 +232,7 @@ def rag_chat_page():
st.session_state.messages.append({"role": "system", "content": system_prompt})
# Query the vector DB
rag_response = llama_stack_api.client.tool_runtime.rag_tool.query(
rag_response = LlamaStackApi().client.tool_runtime.rag_tool.query(
content=prompt, vector_db_ids=list(selected_vector_dbs)
)
prompt_context = rag_response.content
@ -251,7 +251,7 @@ def rag_chat_page():
# Run inference directly
st.session_state.messages.append({"role": "user", "content": extended_prompt})
response = llama_stack_api.client.inference.chat_completion(
response = LlamaStackApi().client.inference.chat_completion(
messages=st.session_state.messages,
model_id=selected_model,
sampling_params={

View file

@ -13,7 +13,7 @@ from llama_stack_client import Agent
from llama_stack_client.lib.agents.react.agent import ReActAgent
from llama_stack_client.lib.agents.react.tool_parser import ReActOutput
from llama_stack.distribution.ui.modules.api import llama_stack_api
from llama_stack.distribution.ui.modules.api import LlamaStackApi
class AgentType(enum.Enum):
@ -24,7 +24,7 @@ class AgentType(enum.Enum):
def tool_chat_page():
st.title("🛠 Tools")
client = llama_stack_api.client
client = LlamaStackApi().client
models = client.models.list()
model_list = [model.identifier for model in models if model.api_model_type == "llm"]
@ -55,7 +55,7 @@ def tool_chat_page():
)
if "builtin::rag" in toolgroup_selection:
vector_dbs = llama_stack_api.client.vector_dbs.list() or []
vector_dbs = LlamaStackApi().client.vector_dbs.list() or []
if not vector_dbs:
st.info("No vector databases available for selection.")
vector_dbs = [vector_db.identifier for vector_db in vector_dbs]

View file

@ -1,5 +1,5 @@
llama-stack>=0.2.1
llama-stack-client>=0.2.1
llama-stack-client>=0.2.9
pandas
streamlit
streamlit-option-menu
streamlit-keycloak

View file

@ -154,3 +154,17 @@ tool_groups:
provider_id: rag-runtime
server:
port: 8321
auth:
provider_type: "oauth2_token"
config:
jwks:
introspection:
url: ${env.KEYCLOAK_INSTROSPECT:https://iam.phoenix-systems.ch/realms/kvant/protocol/openid-connect/token/introspect}
client_id: ${env.KEYCLOAK_CLIENT_ID:llama-stack}
client_secret: ${env.KEYCLOAK_CLIENT_SECRET}
claims_mapping:
sub: projects
scope: roles
#groups: teams
customer/id: teams
aud: namespaces

View file

@ -1,3 +1,7 @@
#!/usr/bin/env bash
export KEYCLOAK_URL="https://iam.phoenix-systems.ch"
export KEYCLOAK_REALM="kvant"
export KEYCLOAK_CLIENT_ID="llama-stack-playground"
uv run --with ".[ui]" streamlit run llama_stack/distribution/ui/app.py

View file

@ -49,6 +49,7 @@ ui = [
"pandas",
"llama-stack-client>=0.2.9",
"streamlit-option-menu",
"streamlit-keycloak",
]
[dependency-groups]

4622
uv.lock generated

File diff suppressed because it is too large Load diff