# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import Any, Dict, List, Protocol, runtime_checkable from llama_models.schema_utils import json_schema_type, webmethod from pydantic import BaseModel from llama_models.llama3.api.datatypes import * # noqa: F403 from llama_stack.apis.scoring_functions import * # noqa: F403 # mapping of metric to value ScoringResultRow = Dict[str, Any] @json_schema_type class ScoringResult(BaseModel): score_rows: List[ScoringResultRow] # aggregated metrics to value aggregated_results: Dict[str, Any] @json_schema_type class ScoreBatchResponse(BaseModel): dataset_id: Optional[str] = None results: Dict[str, ScoringResult] @json_schema_type class ScoreResponse(BaseModel): # each key in the dict is a scoring function name results: Dict[str, ScoringResult] class ScoringFunctionStore(Protocol): def get_scoring_function(self, scoring_fn_id: str) -> ScoringFn: ... @runtime_checkable class Scoring(Protocol): scoring_function_store: ScoringFunctionStore @webmethod(route="/scoring/score-batch") async def score_batch( self, dataset_id: str, scoring_functions: Dict[str, Optional[ScoringFnParams]] = None, save_results_dataset: bool = False, ) -> ScoreBatchResponse: ... @webmethod(route="/scoring/score") async def score( self, input_rows: List[Dict[str, Any]], scoring_functions: Dict[str, Optional[ScoringFnParams]] = None, ) -> ScoreResponse: ...