# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import AsyncGenerator import httpx from llama_models.datatypes import CoreModelId from llama_models.llama3.api.chat_format import ChatFormat from llama_models.llama3.api.datatypes import Message from llama_models.llama3.api.tokenizer import Tokenizer from ollama import AsyncClient from llama_stack.providers.utils.inference.model_registry import ( build_model_alias, ModelRegistryHelper, ) from llama_stack.apis.inference import * # noqa: F403 from llama_stack.providers.datatypes import ModelsProtocolPrivate from llama_stack.providers.utils.inference.openai_compat import ( get_sampling_options, OpenAICompatCompletionChoice, OpenAICompatCompletionResponse, process_chat_completion_response, process_chat_completion_stream_response, process_completion_response, process_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, completion_request_to_prompt, convert_image_media_to_url, request_has_media, ) model_aliases = [ build_model_alias( "llama3.1:8b-instruct-fp16", CoreModelId.llama3_1_8b_instruct.value, ), build_model_alias( "llama3.1:70b-instruct-fp16", CoreModelId.llama3_1_70b_instruct.value, ), build_model_alias( "llama3.2:1b-instruct-fp16", CoreModelId.llama3_2_1b_instruct.value, ), build_model_alias( "llama3.2:3b-instruct-fp16", CoreModelId.llama3_2_3b_instruct.value, ), build_model_alias( "llama-guard3:8b", CoreModelId.llama_guard_3_8b.value, ), build_model_alias( "llama-guard3:1b", CoreModelId.llama_guard_3_1b.value, ), build_model_alias( "x/llama3.2-vision:11b-instruct-fp16", CoreModelId.llama3_2_11b_vision_instruct.value, ), ] class OllamaInferenceAdapter(Inference, ModelRegistryHelper, ModelsProtocolPrivate): def __init__(self, url: str) -> None: ModelRegistryHelper.__init__( self, model_aliases=model_aliases, ) self.url = url self.formatter = ChatFormat(Tokenizer.get_instance()) @property def client(self) -> AsyncClient: return AsyncClient(host=self.url) async def initialize(self) -> None: print("Initializing Ollama, checking connectivity to server...") try: await self.client.ps() except httpx.ConnectError as e: raise RuntimeError( "Ollama Server is not running, start it using `ollama serve` in a separate terminal" ) from e async def shutdown(self) -> None: pass async def completion( self, model_id: str, content: InterleavedTextMedia, sampling_params: Optional[SamplingParams] = SamplingParams(), response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: model = await self.model_store.get_model(model_id) request = CompletionRequest( model=model.provider_resource_id, content=content, sampling_params=sampling_params, stream=stream, logprobs=logprobs, ) if stream: return self._stream_completion(request) else: return await self._nonstream_completion(request) async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator: params = await self._get_params(request) async def _generate_and_convert_to_openai_compat(): s = await self.client.generate(**params) async for chunk in s: choice = OpenAICompatCompletionChoice( finish_reason=chunk["done_reason"] if chunk["done"] else None, text=chunk["response"], ) yield OpenAICompatCompletionResponse( choices=[choice], ) stream = _generate_and_convert_to_openai_compat() async for chunk in process_completion_stream_response(stream, self.formatter): yield chunk async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator: params = await self._get_params(request) r = await self.client.generate(**params) assert isinstance(r, dict) choice = OpenAICompatCompletionChoice( finish_reason=r["done_reason"] if r["done"] else None, text=r["response"], ) response = OpenAICompatCompletionResponse( choices=[choice], ) return process_completion_response(response, self.formatter) async def chat_completion( self, model_id: str, messages: List[Message], sampling_params: Optional[SamplingParams] = SamplingParams(), response_format: Optional[ResponseFormat] = None, tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: model = await self.model_store.get_model(model_id) request = ChatCompletionRequest( model=model.provider_resource_id, messages=messages, sampling_params=sampling_params, tools=tools or [], tool_choice=tool_choice, tool_prompt_format=tool_prompt_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_chat_completion(request) else: return await self._nonstream_chat_completion(request) async def _get_params( self, request: Union[ChatCompletionRequest, CompletionRequest] ) -> dict: sampling_options = get_sampling_options(request.sampling_params) # This is needed since the Ollama API expects num_predict to be set # for early truncation instead of max_tokens. if sampling_options.get("max_tokens") is not None: sampling_options["num_predict"] = sampling_options["max_tokens"] input_dict = {} media_present = request_has_media(request) if isinstance(request, ChatCompletionRequest): if media_present: contents = [ await convert_message_to_dict_for_ollama(m) for m in request.messages ] # flatten the list of lists input_dict["messages"] = [ item for sublist in contents for item in sublist ] else: input_dict["raw"] = True input_dict["prompt"] = chat_completion_request_to_prompt( request, self.get_llama_model(request.model), self.formatter ) else: assert ( not media_present ), "Ollama does not support media for Completion requests" input_dict["prompt"] = completion_request_to_prompt(request, self.formatter) input_dict["raw"] = True return { "model": request.model, **input_dict, "options": sampling_options, "stream": request.stream, } async def _nonstream_chat_completion( self, request: ChatCompletionRequest ) -> ChatCompletionResponse: params = await self._get_params(request) if "messages" in params: r = await self.client.chat(**params) else: r = await self.client.generate(**params) assert isinstance(r, dict) if "message" in r: choice = OpenAICompatCompletionChoice( finish_reason=r["done_reason"] if r["done"] else None, text=r["message"]["content"], ) else: choice = OpenAICompatCompletionChoice( finish_reason=r["done_reason"] if r["done"] else None, text=r["response"], ) response = OpenAICompatCompletionResponse( choices=[choice], ) return process_chat_completion_response(response, self.formatter) async def _stream_chat_completion( self, request: ChatCompletionRequest ) -> AsyncGenerator: params = await self._get_params(request) async def _generate_and_convert_to_openai_compat(): if "messages" in params: s = await self.client.chat(**params) else: s = await self.client.generate(**params) async for chunk in s: if "message" in chunk: choice = OpenAICompatCompletionChoice( finish_reason=chunk["done_reason"] if chunk["done"] else None, text=chunk["message"]["content"], ) else: choice = OpenAICompatCompletionChoice( finish_reason=chunk["done_reason"] if chunk["done"] else None, text=chunk["response"], ) yield OpenAICompatCompletionResponse( choices=[choice], ) stream = _generate_and_convert_to_openai_compat() async for chunk in process_chat_completion_stream_response( stream, self.formatter ): yield chunk async def embeddings( self, model_id: str, contents: List[InterleavedTextMedia], ) -> EmbeddingsResponse: raise NotImplementedError() async def convert_message_to_dict_for_ollama(message: Message) -> List[dict]: async def _convert_content(content) -> dict: if isinstance(content, ImageMedia): return { "role": message.role, "images": [ await convert_image_media_to_url( content, download=True, include_format=False ) ], } else: return { "role": message.role, "content": content, } if isinstance(message.content, list): return [await _convert_content(c) for c in message.content] else: return [await _convert_content(message.content)]