# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import AsyncGenerator, List, Optional, Union from together import Together from llama_stack.apis.common.content_types import ( InterleavedContent, InterleavedContentItem, ) from llama_stack.apis.inference import ( ChatCompletionRequest, ChatCompletionResponse, CompletionRequest, EmbeddingsResponse, EmbeddingTaskType, Inference, LogProbConfig, Message, ResponseFormat, ResponseFormatType, SamplingParams, TextTruncation, ToolChoice, ToolConfig, ToolDefinition, ToolPromptFormat, ) from llama_stack.distribution.request_headers import NeedsRequestProviderData from llama_stack.log import get_logger from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from llama_stack.providers.utils.inference.openai_compat import ( convert_message_to_openai_dict, get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, process_completion_response, process_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, completion_request_to_prompt, content_has_media, interleaved_content_as_str, request_has_media, ) from .config import TogetherImplConfig from .models import MODEL_ENTRIES logger = get_logger(name=__name__, category="inference") class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData): def __init__(self, config: TogetherImplConfig) -> None: ModelRegistryHelper.__init__(self, MODEL_ENTRIES) self.config = config async def initialize(self) -> None: pass async def shutdown(self) -> None: pass async def completion( self, model_id: str, content: InterleavedContent, sampling_params: Optional[SamplingParams] = None, response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = CompletionRequest( model=model.provider_resource_id, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_completion(request) else: return await self._nonstream_completion(request) def _get_client(self) -> Together: together_api_key = None config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None if config_api_key: together_api_key = config_api_key else: provider_data = self.get_request_provider_data() if provider_data is None or not provider_data.together_api_key: raise ValueError( 'Pass Together API Key in the header X-LlamaStack-Provider-Data as { "together_api_key": }' ) together_api_key = provider_data.together_api_key return Together(api_key=together_api_key) async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse: params = await self._get_params(request) r = self._get_client().completions.create(**params) return process_completion_response(r) async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator: params = await self._get_params(request) # if we shift to TogetherAsyncClient, we won't need this wrapper async def _to_async_generator(): s = self._get_client().completions.create(**params) for chunk in s: yield chunk stream = _to_async_generator() async for chunk in process_completion_stream_response(stream): yield chunk def _build_options( self, sampling_params: Optional[SamplingParams], logprobs: Optional[LogProbConfig], fmt: ResponseFormat, ) -> dict: options = get_sampling_options(sampling_params) if fmt: if fmt.type == ResponseFormatType.json_schema.value: options["response_format"] = { "type": "json_object", "schema": fmt.json_schema, } elif fmt.type == ResponseFormatType.grammar.value: raise NotImplementedError("Grammar response format not supported yet") else: raise ValueError(f"Unknown response format {fmt.type}") if logprobs and logprobs.top_k: if logprobs.top_k != 1: raise ValueError( f"Unsupported value: Together only supports logprobs top_k=1. {logprobs.top_k} was provided", ) options["logprobs"] = 1 return options async def chat_completion( self, model_id: str, messages: List[Message], sampling_params: Optional[SamplingParams] = None, tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = None, response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, tool_config: Optional[ToolConfig] = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = ChatCompletionRequest( model=model.provider_resource_id, messages=messages, sampling_params=sampling_params, tools=tools or [], response_format=response_format, stream=stream, logprobs=logprobs, tool_config=tool_config, ) if stream: return self._stream_chat_completion(request) else: return await self._nonstream_chat_completion(request) async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse: params = await self._get_params(request) if "messages" in params: r = self._get_client().chat.completions.create(**params) else: r = self._get_client().completions.create(**params) return process_chat_completion_response(r, request) async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator: params = await self._get_params(request) # if we shift to TogetherAsyncClient, we won't need this wrapper async def _to_async_generator(): if "messages" in params: s = self._get_client().chat.completions.create(**params) else: s = self._get_client().completions.create(**params) for chunk in s: yield chunk stream = _to_async_generator() async for chunk in process_chat_completion_stream_response(stream, request): yield chunk async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict: input_dict = {} media_present = request_has_media(request) llama_model = self.get_llama_model(request.model) if isinstance(request, ChatCompletionRequest): if media_present or not llama_model: input_dict["messages"] = [await convert_message_to_openai_dict(m) for m in request.messages] else: input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model) else: assert not media_present, "Together does not support media for Completion requests" input_dict["prompt"] = await completion_request_to_prompt(request) params = { "model": request.model, **input_dict, "stream": request.stream, **self._build_options(request.sampling_params, request.logprobs, request.response_format), } logger.debug(f"params to together: {params}") return params async def embeddings( self, model_id: str, contents: List[str] | List[InterleavedContentItem], text_truncation: Optional[TextTruncation] = TextTruncation.none, output_dimension: Optional[int] = None, task_type: Optional[EmbeddingTaskType] = None, ) -> EmbeddingsResponse: model = await self.model_store.get_model(model_id) assert all(not content_has_media(content) for content in contents), ( "Together does not support media for embeddings" ) r = self._get_client().embeddings.create( model=model.provider_resource_id, input=[interleaved_content_as_str(content) for content in contents], ) embeddings = [item.embedding for item in r.data] return EmbeddingsResponse(embeddings=embeddings)