# (Experimental) LLama Stack UI ## Docker Setup :warning: This is a work in progress. ## Developer Setup 1. Start up Llama Stack API server. More details [here](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html). ``` llama stack build --template together --image-type conda llama stack run together ``` 2. (Optional) Register datasets and eval tasks as resources. If you want to run pre-configured evaluation flows (e.g. Evaluations (Generation + Scoring) Page). ```bash llama-stack-client datasets register \ --dataset-id "mmlu" \ --provider-id "huggingface" \ --url "https://huggingface.co/datasets/llamastack/evals" \ --metadata '{"path": "llamastack/evals", "name": "evals__mmlu__details", "split": "train"}' \ --schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}' ``` ```bash llama-stack-client benchmarks register \ --eval-task-id meta-reference-mmlu \ --provider-id meta-reference \ --dataset-id mmlu \ --scoring-functions basic::regex_parser_multiple_choice_answer ``` 3. Start Streamlit UI ```bash cd llama_stack/distribution/ui pip install -r requirements.txt streamlit run app.py ```