# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import pytest from pydantic import BaseModel PROVIDER_TOOL_PROMPT_FORMAT = { "remote::ollama": "python_list", "remote::together": "json", "remote::fireworks": "json", } @pytest.fixture(scope="session") def provider_tool_format(inference_provider_type): return ( PROVIDER_TOOL_PROMPT_FORMAT[inference_provider_type] if inference_provider_type in PROVIDER_TOOL_PROMPT_FORMAT else None ) @pytest.fixture(scope="session") def inference_provider_type(llama_stack_client): providers = llama_stack_client.providers.list() if "inference" not in providers: pytest.fail("No inference providers available") assert len(providers["inference"]) > 0 return providers["inference"][0].provider_type @pytest.fixture(scope="session") def text_model_id(llama_stack_client): available_models = [ model.identifier for model in llama_stack_client.models.list() if model.identifier.startswith("meta-llama") and "405" not in model.identifier ] assert len(available_models) > 0 return available_models[0] @pytest.fixture(scope="session") def vision_model_id(llama_stack_client): available_models = [ model.identifier for model in llama_stack_client.models.list() if "vision" in model.identifier.lower() ] if len(available_models) == 0: pytest.skip("No vision models available") return available_models[0] @pytest.fixture def get_weather_tool_definition(): return { "tool_name": "get_weather", "description": "Get the current weather", "parameters": { "location": { "param_type": "string", "description": "The city and state, e.g. San Francisco, CA", }, }, } def test_completion_non_streaming(llama_stack_client, text_model_id): response = llama_stack_client.inference.completion( content="Complete the sentence using one word: Roses are red, violets are ", stream=False, model_id=text_model_id, sampling_params={ "max_tokens": 50, }, ) assert "blue" in response.content.lower().strip() def test_completion_streaming(llama_stack_client, text_model_id): response = llama_stack_client.inference.completion( content="Complete the sentence using one word: Roses are red, violets are ", stream=True, model_id=text_model_id, sampling_params={ "max_tokens": 50, }, ) streamed_content = [chunk.delta for chunk in response] assert "blue" in "".join(streamed_content).lower().strip() def test_completion_log_probs_non_streaming(llama_stack_client, text_model_id): response = llama_stack_client.inference.completion( content="Complete the sentence: Micheael Jordan is born in ", stream=False, model_id=text_model_id, sampling_params={ "max_tokens": 5, }, logprobs={ "top_k": 3, }, ) assert response.logprobs, "Logprobs should not be empty" assert 1 <= len(response.logprobs) <= 5 assert all(len(logprob.logprobs_by_token) == 3 for logprob in response.logprobs) def test_completion_log_probs_streaming(llama_stack_client, text_model_id): response = llama_stack_client.inference.completion( content="Complete the sentence: Micheael Jordan is born in ", stream=True, model_id=text_model_id, sampling_params={ "max_tokens": 5, }, logprobs={ "top_k": 3, }, ) streamed_content = [chunk for chunk in response] for chunk in streamed_content: if chunk.delta: # if there's a token, we expect logprobs assert chunk.logprobs, "Logprobs should not be empty" assert all( len(logprob.logprobs_by_token) == 3 for logprob in chunk.logprobs ) else: # no token, no logprobs assert not chunk.logprobs, "Logprobs should be empty" def test_completion_structured_output( llama_stack_client, text_model_id, inference_provider_type ): user_input = """ Michael Jordan was born in 1963. He played basketball for the Chicago Bulls. He retired in 2003. """ class AnswerFormat(BaseModel): name: str year_born: str year_retired: str response = llama_stack_client.inference.completion( model_id=text_model_id, content=user_input, stream=False, sampling_params={ "max_tokens": 50, }, response_format={ "type": "json_schema", "json_schema": AnswerFormat.model_json_schema(), }, ) answer = AnswerFormat.model_validate_json(response.content) assert answer.name == "Michael Jordan" assert answer.year_born == "1963" assert answer.year_retired == "2003" @pytest.mark.parametrize( "question,expected", [ ("What are the names of planets in our solar system?", "Earth"), ("What are the names of the planets that have rings around them?", "Saturn"), ], ) def test_text_chat_completion_non_streaming( llama_stack_client, text_model_id, question, expected ): response = llama_stack_client.inference.chat_completion( model_id=text_model_id, messages=[ { "role": "user", "content": question, } ], stream=False, ) message_content = response.completion_message.content.lower().strip() assert len(message_content) > 0 assert expected.lower() in message_content @pytest.mark.parametrize( "question,expected", [ ("What's the name of the Sun in latin?", "Sol"), ("What is the name of the US captial?", "Washington"), ], ) def test_text_chat_completion_streaming( llama_stack_client, text_model_id, question, expected ): response = llama_stack_client.inference.chat_completion( model_id=text_model_id, messages=[{"role": "user", "content": question}], stream=True, ) streamed_content = [ str(chunk.event.delta.text.lower().strip()) for chunk in response ] assert len(streamed_content) > 0 assert expected.lower() in "".join(streamed_content) def test_text_chat_completion_with_tool_calling_and_non_streaming( llama_stack_client, text_model_id, get_weather_tool_definition, provider_tool_format ): response = llama_stack_client.inference.chat_completion( model_id=text_model_id, messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "What's the weather like in San Francisco?"}, ], tools=[get_weather_tool_definition], tool_choice="auto", tool_prompt_format=provider_tool_format, stream=False, ) # No content is returned for the system message since we expect the # response to be a tool call assert response.completion_message.content == "" assert response.completion_message.role == "assistant" assert response.completion_message.stop_reason == "end_of_turn" assert len(response.completion_message.tool_calls) == 1 assert response.completion_message.tool_calls[0].tool_name == "get_weather" assert response.completion_message.tool_calls[0].arguments == { "location": "San Francisco, CA" } # Will extract streamed text and separate it from tool invocation content # The returned tool inovcation content will be a string so it's easy to comapare with expected value # e.g. "[get_weather, {'location': 'San Francisco, CA'}]" def extract_tool_invocation_content(response): text_content: str = "" tool_invocation_content: str = "" for chunk in response: delta = chunk.event.delta if delta.type == "text": text_content += delta.text elif delta.type == "tool_call": if isinstance(delta.content, str): tool_invocation_content += delta.content else: call = delta.content tool_invocation_content += f"[{call.tool_name}, {call.arguments}]" return text_content, tool_invocation_content def test_text_chat_completion_with_tool_calling_and_streaming( llama_stack_client, text_model_id, get_weather_tool_definition, provider_tool_format ): response = llama_stack_client.inference.chat_completion( model_id=text_model_id, messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "What's the weather like in San Francisco?"}, ], tools=[get_weather_tool_definition], tool_choice="auto", tool_prompt_format=provider_tool_format, stream=True, ) text_content, tool_invocation_content = extract_tool_invocation_content(response) assert tool_invocation_content == "[get_weather, {'location': 'San Francisco, CA'}]" def test_text_chat_completion_structured_output( llama_stack_client, text_model_id, inference_provider_type ): class AnswerFormat(BaseModel): first_name: str last_name: str year_of_birth: int num_seasons_in_nba: int response = llama_stack_client.inference.chat_completion( model_id=text_model_id, messages=[ { "role": "system", "content": "You are a helpful assistant. Michael Jordan was born in 1963. He played basketball for the Chicago Bulls for 15 seasons.", }, { "role": "user", "content": "Please give me information about Michael Jordan.", }, ], response_format={ "type": "json_schema", "json_schema": AnswerFormat.model_json_schema(), }, stream=False, ) answer = AnswerFormat.model_validate_json(response.completion_message.content) assert answer.first_name == "Michael" assert answer.last_name == "Jordan" assert answer.year_of_birth == 1963 assert answer.num_seasons_in_nba == 15 def test_image_chat_completion_non_streaming(llama_stack_client, vision_model_id): message = { "role": "user", "content": [ { "type": "image", "url": { # TODO: Replace with Github based URI to resources/sample1.jpg "uri": "https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg" }, }, { "type": "text", "text": "Describe what is in this image.", }, ], } response = llama_stack_client.inference.chat_completion( model_id=vision_model_id, messages=[message], stream=False, ) message_content = response.completion_message.content.lower().strip() assert len(message_content) > 0 assert any(expected in message_content for expected in {"dog", "puppy", "pup"}) def test_image_chat_completion_streaming(llama_stack_client, vision_model_id): message = { "role": "user", "content": [ { "type": "image", "url": { # TODO: Replace with Github based URI to resources/sample1.jpg "uri": "https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg" }, }, { "type": "text", "text": "Describe what is in this image.", }, ], } response = llama_stack_client.inference.chat_completion( model_id=vision_model_id, messages=[message], stream=True, ) streamed_content = [ str(chunk.event.delta.text.lower().strip()) for chunk in response ] assert len(streamed_content) > 0 assert any(expected in streamed_content for expected in {"dog", "puppy", "pup"})