# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import Any, Dict, List, Optional, Protocol, runtime_checkable from pydantic import BaseModel from llama_stack.apis.datasets import Dataset from llama_stack.schema_utils import json_schema_type, webmethod @json_schema_type class IterrowsResponse(BaseModel): """ A paginated list of rows from a dataset. :param data: The rows in the current page. :param next_index: Index into dataset for the first row in the next page. None if there are no more rows. """ data: List[Dict[str, Any]] next_index: Optional[int] = None class DatasetStore(Protocol): def get_dataset(self, dataset_id: str) -> Dataset: ... @runtime_checkable class DatasetIO(Protocol): # keeping for aligning with inference/safety, but this is not used dataset_store: DatasetStore @webmethod(route="/datasets/{dataset_id}/iterrows", method="GET") async def iterrows( self, dataset_id: str, start_index: Optional[int] = None, limit: Optional[int] = None, ) -> IterrowsResponse: """Get a paginated list of rows from a dataset. Uses cursor-based pagination. :param dataset_id: The ID of the dataset to get the rows from. :param start_index: Index into dataset for the first row to get. Get all rows if None. :param limit: The number of rows to get per page. """ ... @webmethod(route="/datasets/{dataset_id}/append-rows", method="POST") async def append_rows( self, dataset_id: str, rows: List[Dict[str, Any]] ) -> None: ...