# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import Any, AsyncGenerator, List, Optional, Union import httpx from ollama import AsyncClient from llama_stack.apis.common.content_types import ( ImageContentItem, InterleavedContent, InterleavedContentItem, TextContentItem, ) from llama_stack.apis.inference import ( ChatCompletionRequest, ChatCompletionResponse, ChatCompletionResponseStreamChunk, CompletionRequest, CompletionResponse, CompletionResponseStreamChunk, EmbeddingsResponse, EmbeddingTaskType, GrammarResponseFormat, Inference, JsonSchemaResponseFormat, LogProbConfig, Message, ResponseFormat, SamplingParams, TextTruncation, ToolChoice, ToolConfig, ToolDefinition, ToolPromptFormat, ) from llama_stack.apis.models import Model, ModelType from llama_stack.log import get_logger from llama_stack.providers.datatypes import ModelsProtocolPrivate from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, ) from llama_stack.providers.utils.inference.openai_compat import ( OpenAICompatCompletionChoice, OpenAICompatCompletionResponse, get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, process_completion_response, process_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, completion_request_to_prompt, content_has_media, convert_image_content_to_url, interleaved_content_as_str, request_has_media, ) from .models import model_entries logger = get_logger(name=__name__, category="inference") class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate): def __init__(self, url: str) -> None: self.register_helper = ModelRegistryHelper(model_entries) self.url = url @property def client(self) -> AsyncClient: return AsyncClient(host=self.url) async def initialize(self) -> None: logger.info(f"checking connectivity to Ollama at `{self.url}`...") try: await self.client.ps() except httpx.ConnectError as e: raise RuntimeError( "Ollama Server is not running, start it using `ollama serve` in a separate terminal" ) from e async def shutdown(self) -> None: pass async def unregister_model(self, model_id: str) -> None: pass async def _get_model(self, model_id: str) -> Model: if not self.model_store: raise ValueError("Model store not set") return await self.model_store.get_model(model_id) async def completion( self, model_id: str, content: InterleavedContent, sampling_params: Optional[SamplingParams] = None, response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]: if sampling_params is None: sampling_params = SamplingParams() model = await self._get_model(model_id) request = CompletionRequest( model=model.provider_resource_id, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_completion(request) else: return await self._nonstream_completion(request) async def _stream_completion( self, request: CompletionRequest ) -> AsyncGenerator[CompletionResponseStreamChunk, None]: params = await self._get_params(request) async def _generate_and_convert_to_openai_compat(): s = await self.client.generate(**params) async for chunk in s: choice = OpenAICompatCompletionChoice( finish_reason=chunk["done_reason"] if chunk["done"] else None, text=chunk["response"], ) yield OpenAICompatCompletionResponse( choices=[choice], ) stream = _generate_and_convert_to_openai_compat() async for chunk in process_completion_stream_response(stream): yield chunk async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse: params = await self._get_params(request) r = await self.client.generate(**params) choice = OpenAICompatCompletionChoice( finish_reason=r["done_reason"] if r["done"] else None, text=r["response"], ) response = OpenAICompatCompletionResponse( choices=[choice], ) return process_completion_response(response) async def chat_completion( self, model_id: str, messages: List[Message], sampling_params: Optional[SamplingParams] = None, tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = None, response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, tool_config: Optional[ToolConfig] = None, ) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]: if sampling_params is None: sampling_params = SamplingParams() model = await self._get_model(model_id) request = ChatCompletionRequest( model=model.provider_resource_id, messages=messages, sampling_params=sampling_params, tools=tools or [], stream=stream, logprobs=logprobs, response_format=response_format, tool_config=tool_config, ) if stream: return self._stream_chat_completion(request) else: return await self._nonstream_chat_completion(request) async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict: sampling_options = get_sampling_options(request.sampling_params) # This is needed since the Ollama API expects num_predict to be set # for early truncation instead of max_tokens. if sampling_options.get("max_tokens") is not None: sampling_options["num_predict"] = sampling_options["max_tokens"] input_dict: dict[str, Any] = {} media_present = request_has_media(request) llama_model = self.register_helper.get_llama_model(request.model) if isinstance(request, ChatCompletionRequest): if media_present or not llama_model: contents = [await convert_message_to_openai_dict_for_ollama(m) for m in request.messages] # flatten the list of lists input_dict["messages"] = [item for sublist in contents for item in sublist] else: input_dict["raw"] = True input_dict["prompt"] = await chat_completion_request_to_prompt( request, llama_model, ) else: assert not media_present, "Ollama does not support media for Completion requests" input_dict["prompt"] = await completion_request_to_prompt(request) input_dict["raw"] = True if fmt := request.response_format: if isinstance(fmt, JsonSchemaResponseFormat): input_dict["format"] = fmt.json_schema elif isinstance(fmt, GrammarResponseFormat): raise NotImplementedError("Grammar response format is not supported") else: raise ValueError(f"Unknown response format type: {fmt.type}") params = { "model": request.model, **input_dict, "options": sampling_options, "stream": request.stream, } logger.debug(f"params to ollama: {params}") return params async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse: params = await self._get_params(request) if "messages" in params: r = await self.client.chat(**params) else: r = await self.client.generate(**params) if "message" in r: choice = OpenAICompatCompletionChoice( finish_reason=r["done_reason"] if r["done"] else None, text=r["message"]["content"], ) else: choice = OpenAICompatCompletionChoice( finish_reason=r["done_reason"] if r["done"] else None, text=r["response"], ) response = OpenAICompatCompletionResponse( choices=[choice], ) return process_chat_completion_response(response, request) async def _stream_chat_completion( self, request: ChatCompletionRequest ) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]: params = await self._get_params(request) async def _generate_and_convert_to_openai_compat(): if "messages" in params: s = await self.client.chat(**params) else: s = await self.client.generate(**params) async for chunk in s: if "message" in chunk: choice = OpenAICompatCompletionChoice( finish_reason=chunk["done_reason"] if chunk["done"] else None, text=chunk["message"]["content"], ) else: choice = OpenAICompatCompletionChoice( finish_reason=chunk["done_reason"] if chunk["done"] else None, text=chunk["response"], ) yield OpenAICompatCompletionResponse( choices=[choice], ) stream = _generate_and_convert_to_openai_compat() async for chunk in process_chat_completion_stream_response(stream, request): yield chunk async def embeddings( self, model_id: str, contents: List[str] | List[InterleavedContentItem], text_truncation: Optional[TextTruncation] = TextTruncation.none, output_dimension: Optional[int] = None, task_type: Optional[EmbeddingTaskType] = None, ) -> EmbeddingsResponse: model = await self._get_model(model_id) assert all(not content_has_media(content) for content in contents), ( "Ollama does not support media for embeddings" ) response = await self.client.embed( model=model.provider_resource_id, input=[interleaved_content_as_str(content) for content in contents], ) embeddings = response["embeddings"] return EmbeddingsResponse(embeddings=embeddings) async def register_model(self, model: Model) -> Model: model = await self.register_helper.register_model(model) if model.model_type == ModelType.embedding: logger.info(f"Pulling embedding model `{model.provider_resource_id}` if necessary...") await self.client.pull(model.provider_resource_id) # we use list() here instead of ps() - # - ps() only lists running models, not available models # - models not currently running are run by the ollama server as needed response = await self.client.list() available_models = [m["model"] for m in response["models"]] if model.provider_resource_id not in available_models: raise ValueError( f"Model '{model.provider_resource_id}' is not available in Ollama. Available models: {', '.join(available_models)}" ) return model async def convert_message_to_openai_dict_for_ollama(message: Message) -> List[dict]: async def _convert_content(content) -> dict: if isinstance(content, ImageContentItem): return { "role": message.role, "images": [await convert_image_content_to_url(content, download=True, include_format=False)], } else: text = content.text if isinstance(content, TextContentItem) else content assert isinstance(text, str) return { "role": message.role, "content": text, } if isinstance(message.content, list): return [await _convert_content(c) for c in message.content] else: return [await _convert_content(message.content)]