--- orphan: true --- # Dell Distribution of Llama Stack ```{toctree} :maxdepth: 2 :hidden: self ``` The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations. {{ providers_table }} You can use this distribution if you have GPUs and want to run an independent TGI or Dell Enterprise Hub container for running inference. {% if run_config_env_vars %} ### Environment Variables The following environment variables can be configured: {% for var, (default_value, description) in run_config_env_vars.items() %} - `{{ var }}`: {{ description }} (default: `{{ default_value }}`) {% endfor %} {% endif %} ## Setting up Inference server using Dell Enterprise Hub's custom TGI container. NOTE: This is a placeholder to run inference with TGI. This will be updated to use [Dell Enterprise Hub's containers](https://dell.huggingface.co/authenticated/models) once verified. ```bash export INFERENCE_PORT=8181 export DEH_URL=http://0.0.0.0:$INFERENCE_PORT export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct export CHROMADB_HOST=localhost export CHROMADB_PORT=6601 export CHROMA_URL=http://$CHROMADB_HOST:$CHROMADB_PORT export CUDA_VISIBLE_DEVICES=0 export LLAMA_STACK_PORT=8321 docker run --rm -it \ --network host \ -v $HOME/.cache/huggingface:/data \ -e HF_TOKEN=$HF_TOKEN \ -p $INFERENCE_PORT:$INFERENCE_PORT \ --gpus $CUDA_VISIBLE_DEVICES \ ghcr.io/huggingface/text-generation-inference \ --dtype bfloat16 \ --usage-stats off \ --sharded false \ --cuda-memory-fraction 0.7 \ --model-id $INFERENCE_MODEL \ --port $INFERENCE_PORT --hostname 0.0.0.0 ``` If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like: ```bash export SAFETY_INFERENCE_PORT=8282 export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B export CUDA_VISIBLE_DEVICES=1 docker run --rm -it \ --network host \ -v $HOME/.cache/huggingface:/data \ -e HF_TOKEN=$HF_TOKEN \ -p $SAFETY_INFERENCE_PORT:$SAFETY_INFERENCE_PORT \ --gpus $CUDA_VISIBLE_DEVICES \ ghcr.io/huggingface/text-generation-inference \ --dtype bfloat16 \ --usage-stats off \ --sharded false \ --cuda-memory-fraction 0.7 \ --model-id $SAFETY_MODEL \ --hostname 0.0.0.0 \ --port $SAFETY_INFERENCE_PORT ``` ## Dell distribution relies on ChromaDB for vector database usage You can start a chroma-db easily using docker. ```bash # This is where the indices are persisted mkdir -p $HOME/chromadb podman run --rm -it \ --network host \ --name chromadb \ -v $HOME/chromadb:/chroma/chroma \ -e IS_PERSISTENT=TRUE \ chromadb/chroma:latest \ --port $CHROMADB_PORT \ --host $CHROMADB_HOST ``` ## Running Llama Stack Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image. ### Via Docker This method allows you to get started quickly without having to build the distribution code. ```bash docker run -it \ --network host \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v $HOME/.llama:/root/.llama \ # NOTE: mount the llama-stack directory if testing local changes else not needed -v /home/hjshah/git/llama-stack:/app/llama-stack-source \ # localhost/distribution-dell:dev if building / testing locally llamastack/distribution-{{ name }}\ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env DEH_URL=$DEH_URL \ --env CHROMA_URL=$CHROMA_URL ``` If you are using Llama Stack Safety / Shield APIs, use: ```bash # You need a local checkout of llama-stack to run this, get it using # git clone https://github.com/meta-llama/llama-stack.git cd /path/to/llama-stack export SAFETY_INFERENCE_PORT=8282 export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B docker run \ -it \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v $HOME/.llama:/root/.llama \ -v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \ llamastack/distribution-{{ name }} \ --yaml-config /root/my-run.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env DEH_URL=$DEH_URL \ --env SAFETY_MODEL=$SAFETY_MODEL \ --env DEH_SAFETY_URL=$DEH_SAFETY_URL \ --env CHROMA_URL=$CHROMA_URL ``` ### Via Conda Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available. ```bash llama stack build --template {{ name }} --image-type conda llama stack run {{ name }} --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env DEH_URL=$DEH_URL \ --env CHROMA_URL=$CHROMA_URL ``` If you are using Llama Stack Safety / Shield APIs, use: ```bash llama stack run ./run-with-safety.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env DEH_URL=$DEH_URL \ --env SAFETY_MODEL=$SAFETY_MODEL \ --env DEH_SAFETY_URL=$DEH_SAFETY_URL \ --env CHROMA_URL=$CHROMA_URL ```