# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import argparse import os import textwrap from pathlib import Path import pkg_resources from llama_toolchain.cli.subcommand import Subcommand from llama_toolchain.utils import DEFAULT_DUMP_DIR CONFIGS_BASE_DIR = os.path.join(DEFAULT_DUMP_DIR, "configs") class InferenceConfigure(Subcommand): """Llama cli for configuring llama toolchain configs""" def __init__(self, subparsers: argparse._SubParsersAction): super().__init__() self.parser = subparsers.add_parser( "configure", prog="llama inference configure", description="Configure llama toolchain inference configs", epilog=textwrap.dedent( """ Example: llama inference configure """ ), formatter_class=argparse.RawTextHelpFormatter, ) self._add_arguments() self.parser.set_defaults(func=self._run_inference_configure_cmd) def _add_arguments(self): pass def read_user_inputs(self): checkpoint_dir = input( "Enter the checkpoint directory for the model (e.g., ~/.llama/checkpoints/Meta-Llama-3-8B/): " ) model_parallel_size = input( "Enter model parallel size (e.g., 1 for 8B / 8 for 70B and 405B): " ) assert model_parallel_size.isdigit() and int(model_parallel_size) in { 1, 8, }, "model parallel size must be 1 or 8" return checkpoint_dir, model_parallel_size def write_output_yaml(self, checkpoint_dir, model_parallel_size, yaml_output_path): default_conf_path = pkg_resources.resource_filename( "llama_toolchain", "data/default_inference_config.yaml" ) with open(default_conf_path, "r") as f: yaml_content = f.read() yaml_content = yaml_content.format( checkpoint_dir=checkpoint_dir, model_parallel_size=model_parallel_size, ) with open(yaml_output_path, "w") as yaml_file: yaml_file.write(yaml_content.strip()) print(f"YAML configuration has been written to {yaml_output_path}") def _run_inference_configure_cmd(self, args: argparse.Namespace) -> None: checkpoint_dir, model_parallel_size = self.read_user_inputs() checkpoint_dir = os.path.expanduser(checkpoint_dir) assert ( Path(checkpoint_dir).exists() and Path(checkpoint_dir).is_dir() ), f"{checkpoint_dir} does not exist or it not a directory" os.makedirs(CONFIGS_BASE_DIR, exist_ok=True) yaml_output_path = Path(CONFIGS_BASE_DIR) / "inference.yaml" self.write_output_yaml( checkpoint_dir, model_parallel_size, yaml_output_path, )