# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from copy import deepcopy from dataclasses import dataclass from functools import partial from typing import Generator, List, Optional from llama_models.llama3_1.api.chat_format import ChatFormat from llama_models.llama3_1.api.datatypes import Message from llama_models.llama3_1.api.tokenizer import Tokenizer from .api.config import InlineImplConfig from .generation import Llama from .parallel_utils import ModelParallelProcessGroup @dataclass class InferenceArgs: messages: List[Message] temperature: float top_p: float max_gen_len: int logprobs: bool class ModelRunner: def __init__(self, llama): self.llama = llama # the `task` object is the same that is sent to `ModelParallelProcessGroup.run_inference()` def __call__(self, task: InferenceArgs): return self.llama.chat_completion( task.messages, task.temperature, task.top_p, task.max_gen_len, task.logprobs, ) def init_model_cb(config: InlineImplConfig): llama = Llama.build(config) return ModelRunner(llama) class LlamaModelParallelGenerator: """ This abstraction exists so - we can run model parallel code without needing to run the CLIs via torchrun - this also enables use model parallel code within a notebook context. A Context Manager is used to ensure that the model parallel process is started and stopped correctly. This does make the ergonomics a little awkward, because it isn't immediately clear at the callsite why we need to use a context manager. """ def __init__(self, config: InlineImplConfig): self.config = config # this is a hack because Agent's loop uses this to tokenize and check if input is too long # while the tool-use loop is going checkpoint = self.config.checkpoint_config.checkpoint self.formatter = ChatFormat(Tokenizer(checkpoint.tokenizer_path)) def start(self): self.__enter__() def stop(self): self.__exit__(None, None, None) def __enter__(self): checkpoint = self.config.checkpoint_config.checkpoint self.group = ModelParallelProcessGroup( checkpoint.model_parallel_size, init_model_cb=partial(init_model_cb, self.config), ) self.group.start() return self def __exit__(self, exc_type, exc_value, exc_traceback): self.group.stop() def chat_completion( self, messages: List[Message], temperature: float = 0.6, top_p: float = 0.9, max_gen_len: Optional[int] = None, logprobs: bool = False, ) -> Generator: req_obj = InferenceArgs( messages=deepcopy(messages), temperature=temperature, top_p=top_p, max_gen_len=max_gen_len, logprobs=logprobs, ) gen = self.group.run_inference(req_obj) yield from gen