# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import random import pytest from llama_stack_client.types.tool_runtime import DocumentParam @pytest.fixture(scope="function") def empty_vector_db_registry(llama_stack_client): vector_dbs = [ vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list() ] for vector_db_id in vector_dbs: llama_stack_client.vector_dbs.unregister(vector_db_id=vector_db_id) @pytest.fixture(scope="function") def single_entry_vector_db_registry(llama_stack_client, empty_vector_db_registry): vector_db_id = f"test_vector_db_{random.randint(1000, 9999)}" llama_stack_client.vector_dbs.register( vector_db_id=vector_db_id, embedding_model="all-MiniLM-L6-v2", embedding_dimension=384, provider_id="faiss", ) vector_dbs = [ vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list() ] return vector_dbs @pytest.fixture(scope="session") def sample_documents(): return [ DocumentParam( document_id="test-doc-1", content="Python is a high-level programming language.", metadata={"category": "programming", "difficulty": "beginner"}, ), DocumentParam( document_id="test-doc-2", content="Machine learning is a subset of artificial intelligence.", metadata={"category": "AI", "difficulty": "advanced"}, ), DocumentParam( document_id="test-doc-3", content="Data structures are fundamental to computer science.", metadata={"category": "computer science", "difficulty": "intermediate"}, ), DocumentParam( document_id="test-doc-4", content="Neural networks are inspired by biological neural networks.", metadata={"category": "AI", "difficulty": "advanced"}, ), ] def assert_valid_response(response): assert len(response.chunks) > 0 assert len(response.scores) > 0 assert len(response.chunks) == len(response.scores) for chunk in response.chunks: assert isinstance(chunk.content, str) def test_vector_db_insert_inline_and_query( llama_stack_client, single_entry_vector_db_registry, sample_documents ): vector_db_id = single_entry_vector_db_registry[0] llama_stack_client.tool_runtime.rag_tool.insert_documents( documents=sample_documents, chunk_size_in_tokens=512, vector_db_id=vector_db_id, ) # Query with a direct match query1 = "programming language" response1 = llama_stack_client.vector_io.query( vector_db_id=vector_db_id, query=query1, ) assert_valid_response(response1) assert any("Python" in chunk.content for chunk in response1.chunks) # Query with semantic similarity query2 = "AI and brain-inspired computing" response2 = llama_stack_client.vector_io.query( vector_db_id=vector_db_id, query=query2, ) assert_valid_response(response2) assert any("neural networks" in chunk.content.lower() for chunk in response2.chunks) # Query with limit on number of results (max_chunks=2) query3 = "computer" response3 = llama_stack_client.vector_io.query( vector_db_id=vector_db_id, query=query3, params={"max_chunks": 2}, ) assert_valid_response(response3) assert len(response3.chunks) <= 2 # Query with threshold on similarity score query4 = "computer" response4 = llama_stack_client.vector_io.query( vector_db_id=vector_db_id, query=query4, params={"score_threshold": 0.01}, ) assert_valid_response(response4) assert all(score >= 0.01 for score in response4.scores) def test_vector_db_insert_from_url_and_query( llama_stack_client, empty_vector_db_registry ): providers = [p for p in llama_stack_client.providers.list() if p.api == "vector_io"] assert len(providers) > 0 vector_db_id = "test_vector_db" llama_stack_client.vector_dbs.register( vector_db_id=vector_db_id, embedding_model="all-MiniLM-L6-v2", embedding_dimension=384, provider_id="faiss", ) # list to check memory bank is successfully registered available_vector_dbs = [ vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list() ] assert vector_db_id in available_vector_dbs # URLs of documents to insert # TODO: Move to test/memory/resources then update the url to # https://raw.githubusercontent.com/meta-llama/llama-stack/main/tests/memory/resources/{url} urls = [ "memory_optimizations.rst", "chat.rst", "llama3.rst", ] documents = [ DocumentParam( document_id=f"num-{i}", content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}", mime_type="text/plain", metadata={}, ) for i, url in enumerate(urls) ] llama_stack_client.tool_runtime.rag_tool.insert_documents( documents=documents, vector_db_id=vector_db_id, chunk_size_in_tokens=512, ) # Query for the name of method response1 = llama_stack_client.vector_io.query( vector_db_id=vector_db_id, query="What's the name of the fine-tunning method used?", ) assert_valid_response(response1) assert any("lora" in chunk.content.lower() for chunk in response1.chunks) # Query for the name of model response2 = llama_stack_client.vector_io.query( vector_db_id=vector_db_id, query="Which Llama model is mentioned?", ) assert_valid_response(response2) assert any("llama2" in chunk.content.lower() for chunk in response2.chunks)