# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import logging from typing import AsyncGenerator, List, Optional from huggingface_hub import AsyncInferenceClient, HfApi from llama_models.llama3.api.chat_format import ChatFormat from llama_models.llama3.api.tokenizer import Tokenizer from llama_models.sku_list import all_registered_models from llama_stack.apis.inference import * # noqa: F403 from llama_stack.apis.models import * # noqa: F403 from llama_stack.providers.datatypes import ModelDef, ModelsProtocolPrivate from llama_stack.providers.utils.inference.openai_compat import ( get_sampling_options, OpenAICompatCompletionChoice, OpenAICompatCompletionResponse, process_chat_completion_response, process_chat_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_model_input_info, ) from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig logger = logging.getLogger(__name__) class _HfAdapter(Inference, ModelsProtocolPrivate): client: AsyncInferenceClient max_tokens: int model_id: str def __init__(self) -> None: self.formatter = ChatFormat(Tokenizer.get_instance()) self.huggingface_repo_to_llama_model_id = { model.huggingface_repo: model.descriptor() for model in all_registered_models() if model.huggingface_repo } async def register_model(self, model: ModelDef) -> None: raise ValueError("Model registration is not supported for HuggingFace models") async def list_models(self) -> List[ModelDef]: repo = self.model_id identifier = self.huggingface_repo_to_llama_model_id[repo] return [ ModelDef( identifier=identifier, llama_model=identifier, metadata={ "huggingface_repo": repo, }, ) ] async def shutdown(self) -> None: pass def completion( self, model: str, content: InterleavedTextMedia, sampling_params: Optional[SamplingParams] = SamplingParams(), stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: raise NotImplementedError() def chat_completion( self, model: str, messages: List[Message], sampling_params: Optional[SamplingParams] = SamplingParams(), tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: request = ChatCompletionRequest( model=model, messages=messages, sampling_params=sampling_params, tools=tools or [], tool_choice=tool_choice, tool_prompt_format=tool_prompt_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_chat_completion(request) else: return self._nonstream_chat_completion(request) async def _nonstream_chat_completion( self, request: ChatCompletionRequest ) -> ChatCompletionResponse: params = self._get_params(request) r = await self.client.text_generation(**params) choice = OpenAICompatCompletionChoice( finish_reason=r.details.finish_reason, text="".join(t.text for t in r.details.tokens), ) response = OpenAICompatCompletionResponse( choices=[choice], ) return process_chat_completion_response(response, self.formatter) async def _stream_chat_completion( self, request: ChatCompletionRequest ) -> AsyncGenerator: params = self._get_params(request) async def _generate_and_convert_to_openai_compat(): s = await self.client.text_generation(**params) async for chunk in s: token_result = chunk.token choice = OpenAICompatCompletionChoice(text=token_result.text) yield OpenAICompatCompletionResponse( choices=[choice], ) stream = _generate_and_convert_to_openai_compat() async for chunk in process_chat_completion_stream_response( stream, self.formatter ): yield chunk def _get_params(self, request: ChatCompletionRequest) -> dict: prompt, input_tokens = chat_completion_request_to_model_input_info( request, self.formatter ) max_new_tokens = min( request.sampling_params.max_tokens or (self.max_tokens - input_tokens), self.max_tokens - input_tokens - 1, ) options = get_sampling_options(request) return dict( prompt=prompt, stream=request.stream, details=True, max_new_tokens=max_new_tokens, stop_sequences=["<|eom_id|>", "<|eot_id|>"], **options, ) async def embeddings( self, model: str, contents: List[InterleavedTextMedia], ) -> EmbeddingsResponse: raise NotImplementedError() class TGIAdapter(_HfAdapter): async def initialize(self, config: TGIImplConfig) -> None: self.client = AsyncInferenceClient(model=config.url, token=config.api_token) endpoint_info = await self.client.get_endpoint_info() self.max_tokens = endpoint_info["max_total_tokens"] self.model_id = endpoint_info["model_id"] class InferenceAPIAdapter(_HfAdapter): async def initialize(self, config: InferenceAPIImplConfig) -> None: self.client = AsyncInferenceClient( model=config.huggingface_repo, token=config.api_token ) endpoint_info = await self.client.get_endpoint_info() self.max_tokens = endpoint_info["max_total_tokens"] self.model_id = endpoint_info["model_id"] class InferenceEndpointAdapter(_HfAdapter): async def initialize(self, config: InferenceEndpointImplConfig) -> None: # Get the inference endpoint details api = HfApi(token=config.api_token) endpoint = api.get_inference_endpoint(config.endpoint_name) # Wait for the endpoint to be ready (if not already) endpoint.wait(timeout=60) # Initialize the adapter self.client = endpoint.async_client self.model_id = endpoint.repository self.max_tokens = int( endpoint.raw["model"]["image"]["custom"]["env"]["MAX_TOTAL_TOKENS"] )