# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. # Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement. import json import logging import math import os import sys import time from pathlib import Path from typing import Generator, List, Optional, Tuple, Union import torch import torch.nn.functional as F from fairscale.nn.model_parallel.initialize import ( get_model_parallel_rank, initialize_model_parallel, model_parallel_is_initialized, ) from lmformatenforcer import JsonSchemaParser, TokenEnforcer, TokenEnforcerTokenizerData from pydantic import BaseModel from llama_stack.apis.inference import ( Fp8QuantizationConfig, Int4QuantizationConfig, ResponseFormat, ResponseFormatType, ) from llama_stack.distribution.utils.model_utils import model_local_dir from llama_stack.models.llama.datatypes import ( GreedySamplingStrategy, Model, SamplingParams, TopPSamplingStrategy, ) from llama_stack.models.llama.llama3.args import ModelArgs from llama_stack.models.llama.llama3.chat_format import ChatFormat, LLMInput from llama_stack.models.llama.llama3.model import Transformer from llama_stack.models.llama.llama3.multimodal.model import ( CrossAttentionTransformer, ) from llama_stack.models.llama.llama3.tokenizer import Tokenizer from llama_stack.models.llama.sku_list import resolve_model from llama_stack.providers.utils.inference.prompt_adapter import ( ChatCompletionRequestWithRawContent, CompletionRequestWithRawContent, ) from .config import MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig log = logging.getLogger(__name__) def model_checkpoint_dir(model_id) -> str: checkpoint_dir = Path(model_local_dir(model_id)) paths = [Path(checkpoint_dir / f"consolidated.{ext}") for ext in ["pth", "00.pth"]] if not any(p.exists() for p in paths): checkpoint_dir = checkpoint_dir / "original" assert checkpoint_dir.exists(), ( f"Could not find checkpoints in: {model_local_dir(model_id)}. " f"If you try to use the native llama model, Please download model using `llama download --model-id {model_id}`" f"Otherwise, please save you model checkpoint under {model_local_dir(model_id)}" ) return str(checkpoint_dir) class TokenResult(BaseModel): token: int text: str logprobs: Optional[List[float]] = None class Llama: @staticmethod def build( config: Union[MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig], model_id: str, llama_model: Model, ): """ Build a Llama instance by initializing and loading a model checkpoint. Note: This method initializes the distributed process group, sets the device to CUDA, and loads the pre-trained model and tokenizer. """ if "DEVICE" in os.environ: device = os.environ.get("DEVICE") if device == "cuda": assert torch.cuda.is_available(), "PyTorch CUDA backend not available" if device == "xpu": assert torch.xpu.is_available(), "PyTorch XPU backend not available" else: if torch.cuda.is_available(): device = "cuda" elif torch.xpu.is_available(): device = "xpu" else: device = "cpu" log.info(f"Using {device} device") llama_model_id = llama_model.core_model_id.value if not torch.distributed.is_initialized(): if device == "cuda": torch.distributed.init_process_group("nccl") else: torch.distributed.init_process_group("gloo") model_parallel_size = llama_model.pth_file_count if not model_parallel_is_initialized(): initialize_model_parallel(model_parallel_size) local_rank = int(os.environ.get("LOCAL_RANK", 0)) if device == "cuda": torch.cuda.set_device(local_rank) elif device == "xpu": torch.xpu.set_device(local_rank) # seed must be the same in all processes if config.torch_seed is not None: torch.manual_seed(config.torch_seed) if local_rank > 0: sys.stdout = open(os.devnull, "w") start_time = time.time() if config.checkpoint_dir and config.checkpoint_dir != "null": ckpt_dir = config.checkpoint_dir else: resolved_model = resolve_model(model_id) if resolved_model is None: # if the model is not a native llama model, get the default checkpoint_dir based on model id ckpt_dir = model_checkpoint_dir(model_id) else: # if the model is a native llama model, get the default checkpoint_dir based on model core_model_id value ckpt_dir = model_checkpoint_dir(resolved_model.descriptor()) checkpoints = sorted(Path(ckpt_dir).glob("*.pth")) assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}" assert model_parallel_size == len(checkpoints), ( f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}" ) ckpt_path = checkpoints[get_model_parallel_rank()] state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=True) with open(Path(ckpt_dir) / "params.json", "r") as f: params = json.loads(f.read()) if "model" in params: params = params["model"] model_args: ModelArgs = ModelArgs( max_seq_len=config.max_seq_len, max_batch_size=config.max_batch_size, **params, ) tokenizer = Tokenizer.get_instance() assert model_args.vocab_size == tokenizer.n_words, ( f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}" ) if isinstance(config, MetaReferenceQuantizedInferenceConfig): if isinstance(config.quantization, Fp8QuantizationConfig): from .quantization.loader import convert_to_fp8_quantized_model # load on CPU in bf16 so that fp8 conversion does not find an # unexpected (fp32, e.g.) datatype torch.set_default_tensor_type(torch.BFloat16Tensor) if model_args.vision_chunk_size > 0: model = CrossAttentionTransformer(model_args) model.setup_cache(model_args.max_batch_size, torch.bfloat16) else: model = Transformer(model_args) model.load_state_dict(state_dict, strict=False) model = convert_to_fp8_quantized_model(model, config, ckpt_dir) elif isinstance(config.quantization, Int4QuantizationConfig): from .quantization.loader import convert_to_int4_quantized_model model = Transformer(model_args) model = convert_to_int4_quantized_model(model, model_args, config) model.load_state_dict(state_dict, strict=True) if model_args.quantization_args is not None and model_args.quantization_args.spinquant: # Add a wrapper for adding hadamard transform for spinquant. # This needs to be done after loading the state dict otherwise an error will be raised while # loading the state dict. from .quantization.hadamard_utils import ( add_hadamard_transform_for_spinquant, ) add_hadamard_transform_for_spinquant(model) else: raise NotImplementedError("Currently int4 and fp8 are the only supported quantization methods.") else: if device == "cuda": if torch.cuda.is_bf16_supported(): torch.set_default_tensor_type(torch.cuda.BFloat16Tensor) else: torch.set_default_tensor_type(torch.cuda.HalfTensor) else: torch.set_default_device(device) if device == "xpu" and torch.xpu.is_bf16_supported(): torch.set_default_dtype(torch.bfloat16) else: torch.set_default_dtype(torch.half) if model_args.vision_chunk_size > 0: model = CrossAttentionTransformer(model_args) model.setup_cache(model_args.max_batch_size, torch.bfloat16) else: model = Transformer(model_args) model.load_state_dict(state_dict, strict=False) model.to(device) log.info(f"Loaded in {time.time() - start_time:.2f} seconds") return Llama(model, tokenizer, model_args, llama_model_id) def __init__( self, model: Transformer, tokenizer: Tokenizer, args: ModelArgs, llama_model: str, ): self.args = args self.model = model self.tokenizer = tokenizer self.formatter = ChatFormat(tokenizer) self.llama_model = llama_model @torch.inference_mode() def generate( self, model_input: LLMInput, max_gen_len: int, temperature: float = 0.6, top_p: float = 0.9, logprobs: bool = False, echo: bool = False, include_stop_token: bool = False, print_input_tokens: bool = False, logits_processor: Optional["LogitsProcessor"] = None, ) -> Generator: params = self.model.params if print_input_tokens: input_tokens = [self.formatter.vision_token if t == 128256 else t for t in model_input.tokens] log.info("Input to model -> " + self.tokenizer.decode(input_tokens)) prompt_tokens = [model_input.tokens] bsz = 1 assert bsz <= params.max_batch_size, (bsz, params.max_batch_size) min_prompt_len = min(len(t) for t in prompt_tokens) max_prompt_len = max(len(t) for t in prompt_tokens) if max_prompt_len >= params.max_seq_len: log.error(f"Out of token budget {max_prompt_len} vs {params.max_seq_len}") return total_len = min(max_gen_len + max_prompt_len, params.max_seq_len) is_vision = isinstance(self.model, CrossAttentionTransformer) if is_vision: images = model_input.vision.images if model_input.vision is not None else [] mask = model_input.vision.mask if model_input.vision is not None else [] # the method works for bsz > 1 so add a batch dimension xattn_caches, cross_attention_masks, full_text_row_masked_out_mask = self.model.compute_vision_tokens_masks( batch_images=[images], batch_masks=[mask], total_len=total_len, ) pad_id = self.tokenizer.pad_id tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long) for k, t in enumerate(prompt_tokens): tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long) if logprobs: token_logprobs = torch.zeros_like(tokens) prev_pos = 0 eos_reached = torch.tensor([False] * bsz) input_text_mask = tokens != pad_id if min_prompt_len == total_len: # TODO(ashwin): unify this branch with the one below and figure out multimodal crap logits = self.model.forward(tokens, prev_pos) token_logprobs = -F.cross_entropy( input=logits.transpose(1, 2), target=tokens, reduction="none", ignore_index=pad_id, ) stop_tokens = torch.tensor(self.tokenizer.stop_tokens) for cur_pos in range(min_prompt_len, total_len): if is_vision: position_ids = torch.arange(prev_pos, cur_pos, dtype=torch.long) logits = self.model.forward( position_ids, tokens, cross_attention_masks, full_text_row_masked_out_mask, xattn_caches, ) else: logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos) if logits_processor is not None: logits = logits_processor.process_logits(tokens[:, :cur_pos], logits) if temperature > 0: probs = torch.softmax(logits[:, -1] / temperature, dim=-1) next_token = sample_top_p(probs, top_p) else: next_token = torch.argmax(logits[:, -1], dim=-1) next_token = next_token.reshape(-1) # only replace token if prompt has already been generated next_token = torch.where(input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token) tokens[:, cur_pos] = next_token target = tokens[:, prev_pos + 1 : cur_pos + 1] if is_vision: # the logits space (num_classes) is designed to never contain a media_token # however our input token stream does contain them. we need to nuke them here # or else the CUDA kernels will crash with an illegal memory access vision_tokens = [self.tokenizer.special_tokens["<|image|>"], 128256] masks = [target.eq(t) for t in vision_tokens] if len(masks) > 1: mask = torch.logical_or(*masks) else: mask = masks[0] target[mask] = 0 if logprobs: token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy( input=logits.transpose(1, 2), target=tokens[:, prev_pos + 1 : cur_pos + 1], reduction="none", ignore_index=pad_id, ) eos_reached |= (~input_text_mask[:, cur_pos]) & (torch.isin(next_token, stop_tokens)) yield TokenResult( token=next_token[0].item(), text=self.tokenizer.decode(next_token.tolist()), logprobs=(token_logprobs[:, cur_pos : cur_pos + 1][0].tolist() if logprobs else None), ) prev_pos = cur_pos if all(eos_reached): break def completion( self, request: CompletionRequestWithRawContent, ) -> Generator: sampling_params = request.sampling_params max_gen_len = sampling_params.max_tokens if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.params.max_seq_len: max_gen_len = self.model.params.max_seq_len - 1 model_input = self.formatter.encode_content(request.content) temperature, top_p = _infer_sampling_params(sampling_params) yield from self.generate( model_input=model_input, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, logprobs=bool(request.logprobs), include_stop_token=True, logits_processor=get_logits_processor( self.tokenizer, self.args.vocab_size, request.response_format, ), ) def chat_completion( self, request: ChatCompletionRequestWithRawContent, ) -> Generator: sampling_params = request.sampling_params max_gen_len = sampling_params.max_tokens if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.params.max_seq_len: max_gen_len = self.model.params.max_seq_len - 1 temperature, top_p = _infer_sampling_params(sampling_params) yield from self.generate( model_input=self.formatter.encode_dialog_prompt( request.messages, request.tool_config.tool_prompt_format, ), max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, logprobs=bool(request.logprobs), include_stop_token=True, logits_processor=get_logits_processor( self.tokenizer, self.args.vocab_size, request.response_format, ), ) def sample_top_p(probs, p): """ Perform top-p (nucleus) sampling on a probability distribution. Args: probs (torch.Tensor): Probability distribution tensor. p (float): Probability threshold for top-p sampling. Returns: torch.Tensor: Sampled token indices. Note: Top-p sampling selects the smallest set of tokens whose cumulative probability mass exceeds the threshold p. The distribution is renormalized based on the selected tokens. """ probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) probs_sum = torch.cumsum(probs_sort, dim=-1) mask = probs_sum - probs_sort > p probs_sort[mask] = 0.0 probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) next_token = torch.multinomial(probs_sort, num_samples=1) next_token = torch.gather(probs_idx, -1, next_token) return next_token class LogitsProcessor: def __init__(self, token_enforcer: TokenEnforcer): self.token_enforcer = token_enforcer self.mask: Optional[torch.Tensor] = None def process_logits(self, tokens: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: token_sequence = tokens[0, :].tolist() allowed_tokens = self.token_enforcer.get_allowed_tokens(token_sequence) if self.mask is not None: self.mask.fill_(-math.inf) else: self.mask = torch.full_like(scores, -math.inf) self.mask[:, :, allowed_tokens] = 0 scores = scores + self.mask return scores def get_logits_processor( tokenizer: Tokenizer, vocab_size: int, response_format: Optional[ResponseFormat], ) -> Optional["LogitsProcessor"]: if response_format is None: return None if response_format.type != ResponseFormatType.json_schema.value: raise ValueError(f"Unsupported response format type {response_format.type}") parser = JsonSchemaParser(response_format.json_schema) data = TokenEnforcerTokenizerData( _build_regular_tokens_list(tokenizer, vocab_size), tokenizer.decode, tokenizer.stop_tokens, ) token_enforcer = TokenEnforcer(data, parser) return LogitsProcessor(token_enforcer) def _build_regular_tokens_list(tokenizer: Tokenizer, vocab_size: int) -> List[Tuple[int, str, bool]]: token_0 = tokenizer.encode("0", bos=False, eos=False)[-1] regular_tokens = [] special_token_ids = set(tokenizer.special_tokens.values()) for token_idx in range(vocab_size): if token_idx in special_token_ids: continue # We prepend token 0 and skip the first letter of the result to get a space if the token is a start word. decoded_after_0 = tokenizer.decode([token_0, token_idx])[1:] decoded_regular = tokenizer.decode([token_idx]) is_word_start_token = len(decoded_after_0) > len(decoded_regular) regular_tokens.append((token_idx, decoded_after_0, is_word_start_token)) return regular_tokens def _infer_sampling_params(sampling_params: SamplingParams): if isinstance(sampling_params.strategy, GreedySamplingStrategy): temperature = 0.0 top_p = 1.0 elif isinstance(sampling_params.strategy, TopPSamplingStrategy): temperature = sampling_params.strategy.temperature top_p = sampling_params.strategy.top_p else: raise ValueError(f"Unsupported sampling strategy {sampling_params.strategy}") return temperature, top_p