# Quick Start In this guide, we'll through how you can use the Llama Stack client SDK to build a simple RAG agent. The most critical requirement for running the agent is running inference on the underlying Llama model. Depending on what hardware (GPUs) you have available, you have various options. We will use `Ollama` for this purpose as it is the easiest to get started with and yet robust. First, let's set up some environment variables that we will use in the rest of the guide. Note that if you open up a new terminal, you will need to set these again. ```bash export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" # ollama names this model differently, and we must use the ollama name when loading the model export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16" export LLAMA_STACK_PORT=5001 ``` ### 1. Start Ollama ```bash ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m ``` By default, Ollama keeps the model loaded in memory for 5 minutes which can be too short. We set the `--keepalive` flag to 60 minutes to ensure the model remains loaded for sometime. ### 2. Start the Llama Stack server Llama Stack is based on a client-server architecture. It consists of a server which can be configured very flexibly so you can mix-and-match various providers for its individual API components -- beyond Inference, these include Memory, Agents, Telemetry, Evals and so forth. To get started quickly, we provide various Docker images for the server component that work with different inference providers out of the box. For this guide, we will use `llamastack/distribution-ollama` as the Docker image. ```bash docker run -it \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v ~/.llama:/root/.llama \ llamastack/distribution-ollama \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env OLLAMA_URL=http://host.docker.internal:11434 ``` Configuration for this is available at `distributions/ollama/run.yaml`. ### 3. Use the Llama Stack client SDK You can interact with the Llama Stack server using various client SDKs. We will use the Python SDK which you can install using the following command. Note that you must be using Python 3.10 or newer: ```bash pip install llama-stack-client ``` Let's use the `llama-stack-client` CLI to check the connectivity to the server. ```bash llama-stack-client configure --endpoint http://localhost:$LLAMA_STACK_PORT llama-stack-client models list ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓ ┃ identifier ┃ provider_id ┃ provider_resource_id ┃ metadata ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━┩ │ meta-llama/Llama-3.2-3B-Instruct │ ollama │ llama3.2:3b-instruct-fp16 │ │ └──────────────────────────────────┴─────────────┴───────────────────────────┴──────────┘ ``` You can test basic Llama inference completion using the CLI too. ```bash llama-stack-client \ inference chat-completion \ --message "hello, what model are you?" ``` Here is a simple example to perform chat completions using Python instead of the CLI. ```python import os from llama_stack_client import LlamaStackClient client = LlamaStackClient(base_url=f"http://localhost:{os.environ['LLAMA_STACK_PORT']}") # List available models models = client.models.list() print(models) response = client.inference.chat_completion( model_id=os.environ["INFERENCE_MODEL"], messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Write a haiku about coding"} ] ) print(response.completion_message.content) ``` ### 4. Your first RAG agent Here is an example of a simple RAG agent that uses the Llama Stack client SDK. ```python import asyncio import os from llama_stack_client import LlamaStackClient from llama_stack_client.lib.agents.agent import Agent from llama_stack_client.lib.agents.event_logger import EventLogger from llama_stack_client.types import Attachment from llama_stack_client.types.agent_create_params import AgentConfig async def run_main(): urls = ["chat.rst", "llama3.rst", "datasets.rst", "lora_finetune.rst"] attachments = [ Attachment( content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}", mime_type="text/plain", ) for i, url in enumerate(urls) ] client = LlamaStackClient(base_url=f"http://localhost:{os.environ['LLAMA_STACK_PORT']}") agent_config = AgentConfig( model=os.environ["INFERENCE_MODEL"], instructions="You are a helpful assistant", tools=[{"type": "memory"}], # enable Memory aka RAG enable_session_persistence=True, ) agent = Agent(client, agent_config) session_id = agent.create_session("test-session") user_prompts = [ ( "I am attaching documentation for Torchtune. Help me answer questions I will ask next.", attachments, ), ( "What are the top 5 topics that were explained? Only list succinct bullet points.", None, ), ] for prompt, attachments in user_prompts: response = agent.create_turn( messages=[{"role": "user", "content": prompt}], attachments=attachments, session_id=session_id, ) for log in EventLogger().log(response): log.print() if __name__ == "__main__": asyncio.run(run_main()) ``` ## Next Steps - Learn more about Llama Stack [Concepts](../concepts/index.md) - Learn how to [Build Llama Stacks](../distributions/index.md) - See [References](../references/index.md) for more details about the llama CLI and Python SDK - For example applications and more detailed tutorials, visit our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repository.