# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from llama_stack.apis.models.models import ModelType from llama_stack.distribution.datatypes import ModelInput, Provider from llama_stack.providers.inline.inference.sentence_transformers import ( SentenceTransformersInferenceConfig, ) from llama_stack.providers.inline.inference.vllm import VLLMConfig from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig from llama_stack.templates.template import ( DistributionTemplate, RunConfigSettings, ToolGroupInput, ) def get_distribution_template() -> DistributionTemplate: providers = { "inference": ["inline::vllm", "inline::sentence-transformers"], "vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"], "safety": ["inline::llama-guard"], "agents": ["inline::meta-reference"], "telemetry": ["inline::meta-reference"], "eval": ["inline::meta-reference"], "datasetio": ["remote::huggingface", "inline::localfs"], "scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"], "tool_runtime": [ "remote::brave-search", "remote::tavily-search", "inline::code-interpreter", "inline::rag-runtime", "remote::model-context-protocol", ], } name = "vllm-gpu" inference_provider = Provider( provider_id="vllm", provider_type="inline::vllm", config=VLLMConfig.sample_run_config(), ) vector_io_provider = Provider( provider_id="faiss", provider_type="inline::faiss", config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"), ) embedding_provider = Provider( provider_id="sentence-transformers", provider_type="inline::sentence-transformers", config=SentenceTransformersInferenceConfig.sample_run_config(), ) inference_model = ModelInput( model_id="${env.INFERENCE_MODEL}", provider_id="vllm", ) embedding_model = ModelInput( model_id="all-MiniLM-L6-v2", provider_id="sentence-transformers", model_type=ModelType.embedding, metadata={ "embedding_dimension": 384, }, ) default_tool_groups = [ ToolGroupInput( toolgroup_id="builtin::websearch", provider_id="tavily-search", ), ToolGroupInput( toolgroup_id="builtin::rag", provider_id="rag-runtime", ), ToolGroupInput( toolgroup_id="builtin::code_interpreter", provider_id="code-interpreter", ), ] return DistributionTemplate( name=name, distro_type="self_hosted", description="Use a built-in vLLM engine for running LLM inference", container_image=None, template_path=None, providers=providers, run_configs={ "run.yaml": RunConfigSettings( provider_overrides={ "inference": [inference_provider, embedding_provider], "vector_io": [vector_io_provider], }, default_models=[inference_model, embedding_model], default_tool_groups=default_tool_groups, ), }, run_config_env_vars={ "LLAMA_STACK_PORT": ( "5001", "Port for the Llama Stack distribution server", ), "INFERENCE_MODEL": ( "meta-llama/Llama-3.2-3B-Instruct", "Inference model loaded into the vLLM engine", ), "TENSOR_PARALLEL_SIZE": ( "1", "Number of tensor parallel replicas (number of GPUs to use).", ), "MAX_TOKENS": ( "4096", "Maximum number of tokens to generate.", ), "ENFORCE_EAGER": ( "False", "Whether to use eager mode for inference (otherwise cuda graphs are used).", ), "GPU_MEMORY_UTILIZATION": ( "0.7", "GPU memory utilization for the vLLM engine.", ), }, )