# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import AsyncGenerator from llama_models.llama3.api.chat_format import ChatFormat from llama_models.llama3.api.datatypes import Message from llama_models.llama3.api.tokenizer import Tokenizer from llama_models.sku_list import all_registered_models, resolve_model from openai import OpenAI from llama_stack.apis.inference import * # noqa: F403 from llama_stack.providers.datatypes import ModelsProtocolPrivate from llama_stack.providers.utils.inference.openai_compat import ( get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, ) from .config import VLLMInferenceAdapterConfig class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate): def __init__(self, config: VLLMInferenceAdapterConfig) -> None: self.config = config self.formatter = ChatFormat(Tokenizer.get_instance()) self.client = None self.huggingface_repo_to_llama_model_id = { model.huggingface_repo: model.descriptor() for model in all_registered_models() if model.huggingface_repo } async def initialize(self) -> None: self.client = OpenAI(base_url=self.config.url, api_key=self.config.api_token) async def register_model(self, model: ModelDef) -> None: raise ValueError("Model registration is not supported for vLLM models") async def shutdown(self) -> None: pass async def list_models(self) -> List[ModelDef]: models = [] for model in self.client.models.list(): repo = model.id if repo not in self.huggingface_repo_to_llama_model_id: print(f"Unknown model served by vllm: {repo}") continue identifier = self.huggingface_repo_to_llama_model_id[repo] models.append( ModelDef( identifier=identifier, llama_model=identifier, ) ) return models async def completion( self, model: str, content: InterleavedTextMedia, sampling_params: Optional[SamplingParams] = SamplingParams(), response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> Union[CompletionResponse, CompletionResponseStreamChunk]: raise NotImplementedError() async def chat_completion( self, model: str, messages: List[Message], sampling_params: Optional[SamplingParams] = SamplingParams(), response_format: Optional[ResponseFormat] = None, tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: request = ChatCompletionRequest( model=model, messages=messages, sampling_params=sampling_params, tools=tools or [], tool_choice=tool_choice, tool_prompt_format=tool_prompt_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_chat_completion(request, self.client) else: return await self._nonstream_chat_completion(request, self.client) async def _nonstream_chat_completion( self, request: ChatCompletionRequest, client: OpenAI ) -> ChatCompletionResponse: params = self._get_params(request) r = client.completions.create(**params) return process_chat_completion_response(r, self.formatter) async def _stream_chat_completion( self, request: ChatCompletionRequest, client: OpenAI ) -> AsyncGenerator: params = self._get_params(request) # TODO: Can we use client.completions.acreate() or maybe there is another way to directly create an async # generator so this wrapper is not necessary? async def _to_async_generator(): s = client.completions.create(**params) for chunk in s: yield chunk stream = _to_async_generator() async for chunk in process_chat_completion_stream_response( stream, self.formatter ): yield chunk def _get_params(self, request: ChatCompletionRequest) -> dict: options = get_sampling_options(request.sampling_params) if "max_tokens" not in options: options["max_tokens"] = self.config.max_tokens model = resolve_model(request.model) if model is None: raise ValueError(f"Unknown model: {request.model}") return { "model": model.huggingface_repo, "prompt": chat_completion_request_to_prompt(request, self.formatter), "stream": request.stream, **options, } async def embeddings( self, model: str, contents: List[InterleavedTextMedia], ) -> EmbeddingsResponse: raise NotImplementedError()