# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from collections.abc import AsyncGenerator from cerebras.cloud.sdk import AsyncCerebras from llama_stack.apis.common.content_types import ( InterleavedContent, InterleavedContentItem, ) from llama_stack.apis.inference import ( ChatCompletionRequest, CompletionRequest, CompletionResponse, EmbeddingsResponse, EmbeddingTaskType, Inference, LogProbConfig, Message, OpenAIEmbeddingsResponse, ResponseFormat, SamplingParams, TextTruncation, ToolChoice, ToolConfig, ToolDefinition, ToolPromptFormat, TopKSamplingStrategy, ) from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, ) from llama_stack.providers.utils.inference.openai_compat import ( OpenAIChatCompletionToLlamaStackMixin, OpenAICompletionToLlamaStackMixin, get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, process_completion_response, process_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, completion_request_to_prompt, ) from .config import CerebrasImplConfig from .models import MODEL_ENTRIES class CerebrasInferenceAdapter( ModelRegistryHelper, Inference, OpenAIChatCompletionToLlamaStackMixin, OpenAICompletionToLlamaStackMixin, ): def __init__(self, config: CerebrasImplConfig) -> None: ModelRegistryHelper.__init__( self, model_entries=MODEL_ENTRIES, ) self.config = config self.client = AsyncCerebras( base_url=self.config.base_url, api_key=self.config.api_key.get_secret_value(), ) async def initialize(self) -> None: return async def shutdown(self) -> None: pass async def completion( self, model_id: str, content: InterleavedContent, sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = CompletionRequest( model=model.provider_resource_id, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_completion( request, ) else: return await self._nonstream_completion(request) async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse: params = await self._get_params(request) r = await self.client.completions.create(**params) return process_completion_response(r) async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator: params = await self._get_params(request) stream = await self.client.completions.create(**params) async for chunk in process_completion_stream_response(stream): yield chunk async def chat_completion( self, model_id: str, messages: list[Message], sampling_params: SamplingParams | None = None, tools: list[ToolDefinition] | None = None, tool_choice: ToolChoice | None = ToolChoice.auto, tool_prompt_format: ToolPromptFormat | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, tool_config: ToolConfig | None = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = ChatCompletionRequest( model=model.provider_resource_id, messages=messages, sampling_params=sampling_params, tools=tools or [], tool_choice=tool_choice, tool_prompt_format=tool_prompt_format, response_format=response_format, stream=stream, logprobs=logprobs, tool_config=tool_config, ) if stream: return self._stream_chat_completion(request) else: return await self._nonstream_chat_completion(request) async def _nonstream_chat_completion(self, request: CompletionRequest) -> CompletionResponse: params = await self._get_params(request) r = await self.client.completions.create(**params) return process_chat_completion_response(r, request) async def _stream_chat_completion(self, request: CompletionRequest) -> AsyncGenerator: params = await self._get_params(request) stream = await self.client.completions.create(**params) async for chunk in process_chat_completion_stream_response(stream, request): yield chunk async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict: if request.sampling_params and isinstance(request.sampling_params.strategy, TopKSamplingStrategy): raise ValueError("`top_k` not supported by Cerebras") prompt = "" if isinstance(request, ChatCompletionRequest): prompt = await chat_completion_request_to_prompt(request, self.get_llama_model(request.model)) elif isinstance(request, CompletionRequest): prompt = await completion_request_to_prompt(request) else: raise ValueError(f"Unknown request type {type(request)}") return { "model": request.model, "prompt": prompt, "stream": request.stream, **get_sampling_options(request.sampling_params), } async def embeddings( self, model_id: str, contents: list[str] | list[InterleavedContentItem], text_truncation: TextTruncation | None = TextTruncation.none, output_dimension: int | None = None, task_type: EmbeddingTaskType | None = None, ) -> EmbeddingsResponse: raise NotImplementedError() async def openai_embeddings( self, model: str, input: str | list[str], encoding_format: str | None = "float", dimensions: int | None = None, user: str | None = None, ) -> OpenAIEmbeddingsResponse: raise NotImplementedError()