# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from collections.abc import AsyncGenerator from openai import OpenAI from llama_stack.apis.common.content_types import ( InterleavedContent, InterleavedContentItem, ) from llama_stack.apis.inference import ( ChatCompletionRequest, ChatCompletionResponse, EmbeddingsResponse, EmbeddingTaskType, Inference, LogProbConfig, Message, OpenAIEmbeddingsResponse, ResponseFormat, SamplingParams, TextTruncation, ToolChoice, ToolConfig, ToolDefinition, ToolPromptFormat, ) from llama_stack.models.llama.sku_types import CoreModelId from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, build_hf_repo_model_entry, ) from llama_stack.providers.utils.inference.openai_compat import ( OpenAIChatCompletionToLlamaStackMixin, OpenAICompletionToLlamaStackMixin, get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, ) from .config import DatabricksImplConfig model_entries = [ build_hf_repo_model_entry( "databricks-meta-llama-3-1-70b-instruct", CoreModelId.llama3_1_70b_instruct.value, ), build_hf_repo_model_entry( "databricks-meta-llama-3-1-405b-instruct", CoreModelId.llama3_1_405b_instruct.value, ), ] class DatabricksInferenceAdapter( ModelRegistryHelper, Inference, OpenAIChatCompletionToLlamaStackMixin, OpenAICompletionToLlamaStackMixin, ): def __init__(self, config: DatabricksImplConfig) -> None: ModelRegistryHelper.__init__(self, model_entries=model_entries) self.config = config async def initialize(self) -> None: return async def shutdown(self) -> None: pass async def completion( self, model: str, content: InterleavedContent, sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, ) -> AsyncGenerator: raise NotImplementedError() async def chat_completion( self, model: str, messages: list[Message], sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, tools: list[ToolDefinition] | None = None, tool_choice: ToolChoice | None = ToolChoice.auto, tool_prompt_format: ToolPromptFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, tool_config: ToolConfig | None = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() request = ChatCompletionRequest( model=model, messages=messages, sampling_params=sampling_params, tools=tools or [], stream=stream, logprobs=logprobs, tool_config=tool_config, ) client = OpenAI(base_url=self.config.url, api_key=self.config.api_token) if stream: return self._stream_chat_completion(request, client) else: return await self._nonstream_chat_completion(request, client) async def _nonstream_chat_completion( self, request: ChatCompletionRequest, client: OpenAI ) -> ChatCompletionResponse: params = self._get_params(request) r = client.completions.create(**params) return process_chat_completion_response(r, request) async def _stream_chat_completion(self, request: ChatCompletionRequest, client: OpenAI) -> AsyncGenerator: params = self._get_params(request) async def _to_async_generator(): s = client.completions.create(**params) for chunk in s: yield chunk stream = _to_async_generator() async for chunk in process_chat_completion_stream_response(stream, request): yield chunk def _get_params(self, request: ChatCompletionRequest) -> dict: return { "model": request.model, "prompt": chat_completion_request_to_prompt(request, self.get_llama_model(request.model)), "stream": request.stream, **get_sampling_options(request.sampling_params), } async def embeddings( self, model_id: str, contents: list[str] | list[InterleavedContentItem], text_truncation: TextTruncation | None = TextTruncation.none, output_dimension: int | None = None, task_type: EmbeddingTaskType | None = None, ) -> EmbeddingsResponse: raise NotImplementedError() async def openai_embeddings( self, model: str, input: str | list[str], encoding_format: str | None = "float", dimensions: int | None = None, user: str | None = None, ) -> OpenAIEmbeddingsResponse: raise NotImplementedError()