# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from collections.abc import AsyncGenerator, AsyncIterator from typing import Any from fireworks.client import Fireworks from openai import AsyncOpenAI from llama_stack.apis.common.content_types import ( InterleavedContent, InterleavedContentItem, ) from llama_stack.apis.inference import ( ChatCompletionRequest, ChatCompletionResponse, CompletionRequest, CompletionResponse, EmbeddingsResponse, EmbeddingTaskType, Inference, LogProbConfig, Message, ResponseFormat, ResponseFormatType, SamplingParams, TextTruncation, ToolChoice, ToolConfig, ToolDefinition, ToolPromptFormat, ) from llama_stack.apis.inference.inference import ( OpenAIChatCompletion, OpenAIChatCompletionChunk, OpenAICompletion, OpenAIEmbeddingsResponse, OpenAIMessageParam, OpenAIResponseFormatParam, ) from llama_stack.distribution.request_headers import NeedsRequestProviderData from llama_stack.log import get_logger from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, ) from llama_stack.providers.utils.inference.openai_compat import ( OpenAIChatCompletionToLlamaStackMixin, convert_message_to_openai_dict, get_sampling_options, prepare_openai_completion_params, process_chat_completion_response, process_chat_completion_stream_response, process_completion_response, process_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, completion_request_to_prompt, content_has_media, interleaved_content_as_str, request_has_media, ) from .config import FireworksImplConfig from .models import MODEL_ENTRIES logger = get_logger(name=__name__, category="inference") class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData): def __init__(self, config: FireworksImplConfig) -> None: ModelRegistryHelper.__init__(self, MODEL_ENTRIES) self.config = config async def initialize(self) -> None: pass async def shutdown(self) -> None: pass def _get_api_key(self) -> str: config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None if config_api_key: return config_api_key else: provider_data = self.get_request_provider_data() if provider_data is None or not provider_data.fireworks_api_key: raise ValueError( 'Pass Fireworks API Key in the header X-LlamaStack-Provider-Data as { "fireworks_api_key": }' ) return provider_data.fireworks_api_key def _get_base_url(self) -> str: return "https://api.fireworks.ai/inference/v1" def _get_client(self) -> Fireworks: fireworks_api_key = self._get_api_key() return Fireworks(api_key=fireworks_api_key) def _get_openai_client(self) -> AsyncOpenAI: return AsyncOpenAI(base_url=self._get_base_url(), api_key=self._get_api_key()) async def completion( self, model_id: str, content: InterleavedContent, sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = CompletionRequest( model=model.provider_resource_id, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_completion(request) else: return await self._nonstream_completion(request) async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse: params = await self._get_params(request) r = await self._get_client().completion.acreate(**params) return process_completion_response(r) async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator: params = await self._get_params(request) # Wrapper for async generator similar async def _to_async_generator(): stream = self._get_client().completion.create(**params) for chunk in stream: yield chunk stream = _to_async_generator() async for chunk in process_completion_stream_response(stream): yield chunk def _build_options( self, sampling_params: SamplingParams | None, fmt: ResponseFormat, logprobs: LogProbConfig | None, ) -> dict: options = get_sampling_options(sampling_params) options.setdefault("max_tokens", 512) if fmt: if fmt.type == ResponseFormatType.json_schema.value: options["response_format"] = { "type": "json_object", "schema": fmt.json_schema, } elif fmt.type == ResponseFormatType.grammar.value: options["response_format"] = { "type": "grammar", "grammar": fmt.bnf, } else: raise ValueError(f"Unknown response format {fmt.type}") if logprobs and logprobs.top_k: options["logprobs"] = logprobs.top_k if options["logprobs"] <= 0 or options["logprobs"] >= 5: raise ValueError("Required range: 0 < top_k < 5") return options async def chat_completion( self, model_id: str, messages: list[Message], sampling_params: SamplingParams | None = None, tools: list[ToolDefinition] | None = None, tool_choice: ToolChoice | None = ToolChoice.auto, tool_prompt_format: ToolPromptFormat | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, tool_config: ToolConfig | None = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = ChatCompletionRequest( model=model.provider_resource_id, messages=messages, sampling_params=sampling_params, tools=tools or [], response_format=response_format, stream=stream, logprobs=logprobs, tool_config=tool_config, ) if stream: return self._stream_chat_completion(request) else: return await self._nonstream_chat_completion(request) async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse: params = await self._get_params(request) if "messages" in params: r = await self._get_client().chat.completions.acreate(**params) else: r = await self._get_client().completion.acreate(**params) return process_chat_completion_response(r, request) async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator: params = await self._get_params(request) async def _to_async_generator(): if "messages" in params: stream = self._get_client().chat.completions.acreate(**params) else: stream = self._get_client().completion.acreate(**params) async for chunk in stream: yield chunk stream = _to_async_generator() async for chunk in process_chat_completion_stream_response(stream, request): yield chunk async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict: input_dict = {} media_present = request_has_media(request) llama_model = self.get_llama_model(request.model) if isinstance(request, ChatCompletionRequest): if media_present or not llama_model: input_dict["messages"] = [ await convert_message_to_openai_dict(m, download=True) for m in request.messages ] else: input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model) else: assert not media_present, "Fireworks does not support media for Completion requests" input_dict["prompt"] = await completion_request_to_prompt(request) # Fireworks always prepends with BOS if "prompt" in input_dict: if input_dict["prompt"].startswith("<|begin_of_text|>"): input_dict["prompt"] = input_dict["prompt"][len("<|begin_of_text|>") :] params = { "model": request.model, **input_dict, "stream": request.stream, **self._build_options(request.sampling_params, request.response_format, request.logprobs), } logger.debug(f"params to fireworks: {params}") return params async def embeddings( self, model_id: str, contents: list[str] | list[InterleavedContentItem], text_truncation: TextTruncation | None = TextTruncation.none, output_dimension: int | None = None, task_type: EmbeddingTaskType | None = None, ) -> EmbeddingsResponse: model = await self.model_store.get_model(model_id) kwargs = {} if model.metadata.get("embedding_dimension"): kwargs["dimensions"] = model.metadata.get("embedding_dimension") assert all(not content_has_media(content) for content in contents), ( "Fireworks does not support media for embeddings" ) response = self._get_client().embeddings.create( model=model.provider_resource_id, input=[interleaved_content_as_str(content) for content in contents], **kwargs, ) embeddings = [data.embedding for data in response.data] return EmbeddingsResponse(embeddings=embeddings) async def openai_embeddings( self, model: str, input: str | list[str], encoding_format: str | None = "float", dimensions: int | None = None, user: str | None = None, ) -> OpenAIEmbeddingsResponse: raise NotImplementedError() async def openai_completion( self, model: str, prompt: str | list[str] | list[int] | list[list[int]], best_of: int | None = None, echo: bool | None = None, frequency_penalty: float | None = None, logit_bias: dict[str, float] | None = None, logprobs: bool | None = None, max_tokens: int | None = None, n: int | None = None, presence_penalty: float | None = None, seed: int | None = None, stop: str | list[str] | None = None, stream: bool | None = None, stream_options: dict[str, Any] | None = None, temperature: float | None = None, top_p: float | None = None, user: str | None = None, guided_choice: list[str] | None = None, prompt_logprobs: int | None = None, ) -> OpenAICompletion: model_obj = await self.model_store.get_model(model) # Fireworks always prepends with BOS if isinstance(prompt, str) and prompt.startswith("<|begin_of_text|>"): prompt = prompt[len("<|begin_of_text|>") :] params = await prepare_openai_completion_params( model=model_obj.provider_resource_id, prompt=prompt, best_of=best_of, echo=echo, frequency_penalty=frequency_penalty, logit_bias=logit_bias, logprobs=logprobs, max_tokens=max_tokens, n=n, presence_penalty=presence_penalty, seed=seed, stop=stop, stream=stream, stream_options=stream_options, temperature=temperature, top_p=top_p, user=user, ) return await self._get_openai_client().completions.create(**params) async def openai_chat_completion( self, model: str, messages: list[OpenAIMessageParam], frequency_penalty: float | None = None, function_call: str | dict[str, Any] | None = None, functions: list[dict[str, Any]] | None = None, logit_bias: dict[str, float] | None = None, logprobs: bool | None = None, max_completion_tokens: int | None = None, max_tokens: int | None = None, n: int | None = None, parallel_tool_calls: bool | None = None, presence_penalty: float | None = None, response_format: OpenAIResponseFormatParam | None = None, seed: int | None = None, stop: str | list[str] | None = None, stream: bool | None = None, stream_options: dict[str, Any] | None = None, temperature: float | None = None, tool_choice: str | dict[str, Any] | None = None, tools: list[dict[str, Any]] | None = None, top_logprobs: int | None = None, top_p: float | None = None, user: str | None = None, ) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]: model_obj = await self.model_store.get_model(model) # Divert Llama Models through Llama Stack inference APIs because # Fireworks chat completions OpenAI-compatible API does not support # tool calls properly. llama_model = self.get_llama_model(model_obj.provider_resource_id) if llama_model: return await OpenAIChatCompletionToLlamaStackMixin.openai_chat_completion( self, model=model, messages=messages, frequency_penalty=frequency_penalty, function_call=function_call, functions=functions, logit_bias=logit_bias, logprobs=logprobs, max_completion_tokens=max_completion_tokens, max_tokens=max_tokens, n=n, parallel_tool_calls=parallel_tool_calls, presence_penalty=presence_penalty, response_format=response_format, seed=seed, stop=stop, stream=stream, stream_options=stream_options, temperature=temperature, tool_choice=tool_choice, tools=tools, top_logprobs=top_logprobs, top_p=top_p, user=user, ) params = await prepare_openai_completion_params( messages=messages, frequency_penalty=frequency_penalty, function_call=function_call, functions=functions, logit_bias=logit_bias, logprobs=logprobs, max_completion_tokens=max_completion_tokens, max_tokens=max_tokens, n=n, parallel_tool_calls=parallel_tool_calls, presence_penalty=presence_penalty, response_format=response_format, seed=seed, stop=stop, stream=stream, stream_options=stream_options, temperature=temperature, tool_choice=tool_choice, tools=tools, top_logprobs=top_logprobs, top_p=top_p, user=user, ) return await self._get_openai_client().chat.completions.create(model=model_obj.provider_resource_id, **params)